The tiny space invader and the new space station will have equal orbital speed.
<h3>The orbital speed of satellite </h3>
The orbital speed of satellite on Earth surface is given as;

where;
- V is the orbital speed
- G is universal gravitation
- M is mass of the Earth
- r is the radius of the circular path
Since the two objects are at the same height from Earth's surface, the distance from the central point (r) will be the same. Thus, the two objects will have equal orbital speed.
Learn more about orbital speed here: brainly.com/question/22247460
Answer:
Given that,
- Power = 2000 W
- time = 60 seconds
- distance= 10m
Power = work done ÷ time
Here, since the movement is vertical, w = mgh
So,
Power = mgh÷t
2000 = (m × 9.8 ×10) ÷ 60
m = (2000 ×60) ÷98
m = 1224.5kg
Answer:
1.07 nT
Explanation:
We know that E/B = c where E = electric field amplitude = 320 mV/m = 0.32 V/m, B = magnetic field amplitude and c = speed of light = 3 × 10⁸ m/s.
So, B = E/c
Substituting E and c into B, we have
B = E/c
= 0.32 V/m ÷ 3 × 10⁸ m/s
= 0.1067 × 10⁻⁸ T
= 1.067 × 10⁻⁹ T
= 1.067 nT
≅ 1.07 nT
Taking into account the rule of three for the change of units, the mass of the book is 45600 miligrams.
First of all, the rule of three is a mathematical tool that helps you quickly solve proportionality problems.
Having three known values and one unknown, a proportional relationship is established between all of them in order to find the fourth term of the proportion.
If the relationship between the magnitudes is direct (when one magnitude increases, so does the other; or when one magnitude decreases, so does the other), the rule of three is applied as follows, where a, b and c are known values and x is the unknown to calculate:
a → b
c → x
So: 
Being 1 kg equivalent to 1000000 milligrams, In this case the rule of three is applied as follows: if 1 kg equals 1000000 milligrams, 4.56×10⁻² kg equals how many milligrams?
1 kg → 1000000 milligrams
4.56×10⁻² kg → x
So:

<u><em>x=45600 miligrams</em></u>
In summary, the mass of the book is 45600 miligrams.
Learn more:
Answer:
They two waves has the same amplitude and frequency but different wavelengths.
Explanation: comparing the wave equation above with the general wave equation
y(x,t) = Asin(2Πft + 2Πx/¶)
Let ¶ be the wavelength
A is the amplitude
f is the frequency
t is the time
They two waves has the same amplitude and frequency but different wavelengths.