Answer:
There is 54.29 % sample left after 12.6 days
Explanation:
Step 1: Data given
Half life time = 14.3 days
Time left = 12.6 days
Suppose the original amount is 100.00 grams
Step 2: Calculate the percentage left
X = 100 / 2^n
⇒ with X = The amount of sample after 12.6 days
⇒ with n = (time passed / half-life time) = (12.6/14.3)
X = 100 / 2^(12.6/14.3)
X = 54.29
There is 54.29 % sample left after 12.6 days
Answer:
11.31 g.
Explanation:
Molarity is defined as the no. of moles of a solute per 1.0 L of the solution.
M = (no. of moles of solute)/(V of the solution (L)).
<em>∴ M = (mass/molar mass)of NaCl/(V of the solution (L)).</em>
<em></em>
<em>∴ mass of NaCl remained after evaporation of water = (M)(V of the solution (L))(molar mass)</em> = (0.45 M)(0.43 L)(58.44 g/mol) = <em>11.31 g.</em>
Answer:
Empirical formula is Cr₂O₃.
Explanation:
Given data:
Percentage of Cr = 68.4%
Percentage of O = 31.6%
Empirical formula = ?
Solution:
Number of gram atoms of Cr = 68.4 / 52 = 1.3
2
Number of gram atoms of O = 31.6 / 16 = 1.98
Atomic ratio:
Cr : O
1.32/1.32 : 1.98/1.32
1 : 1.5
Cr : O = 1 : 1.5
Cr : O = 2(1 : 1.5)
Empirical formula is Cr₂O₃.
Answer:it all above
Explanation:
it all above because all the answer are truth so it all above
The total amount of heat required is the sum of all the sensible heat and latent heats involved in bringing the ice to a desired temperature and state. The latent heat of fusion and vaporization of water 333.55 J/g and 2260 J/g, respectively. Solving for the total amount of heat,
total amount of heat = 13.0 g (2.09 J/gC)(12) + 13(333.55 J/g) + 13.0 g (4.18 J/gC)(100 - 0) + (13.0 g)(2260 J/g) + (13 g)(2.01 J/g)(113-100)
= 39815.88 J
= 39.82 kJ