1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mice21 [21]
3 years ago
12

A pendulum consists of a stone with mass m swinging on a string of length L and negligible mass. The stone has a speed of v0 whe

n it passes its lowest point. (a) Write an expression for the speed of the stone when the string is at some angle theta with the vertical. (b) What is the greatest angle with the vertical that the string will reach during the stone's motion? (c) If the potential energy of the pendulum-Earth system is taken to be zero at the stone's lowest point, what is the total mechanical energy of the system? State all your answers in terms of the given variables and g.
Physics
1 answer:
Dmitriy789 [7]3 years ago
8 0

Answer:

(a) v = \sqrt{ mv_0^2 - 2gL(1-\cos(\theta))}

(b) \theta = \arccos(\frac{2gL-v_0^2}{2gL})

(c) E_{total} = \frac{1}{2}mv_0^2

Explanation:

(a) The total mechanical energy of the system is conserved.

K_A + U_A = K_B + U_B\\\frac{1}{2}mv_0^2 + 0 = \frac{1}{2}mv^2 + mgh \\h = L - L\cos(\theta) = L(1 - \cos\theta)\\\frac{1}{2}mv^2 = \frac{1}{2}mv_0^2 - mgL(1-\cos(\theta))\\v^2 = mv_0^2 - 2gL(1-\cos(\theta))\\v = \sqrt{ mv_0^2 - 2gL(1-\cos(\theta))}

(b) The conservation of energy states

K_A + U_A = K_M + U_M\\\frac{1}{2}mv_0^2 + 0 = 0 + mgL(1-\cos(\theta))\\1-\cos(\theta) = \frac{v_0^2}{2gL}\\\cos(\theta) = 1-\frac{v_0^2}{2gL} = \frac{2gL-v_0^2}{2gL}\\\theta = \arccos(\frac{2gL-v_0^2}{2gL})

(c) As explained in part (a) the total mechanical energy of the system is equal to the initial kinetic energy, since the potential energy of the system at that point is zero.

E_{total}= K_A + U_A = K_A + 0\\E_{total} = \frac{1}{2}mv_0^2

You might be interested in
How to find id in this app. ​
AysviL [449]

Go and click to the invitation bar and you can find an option written as " search friends " . Then it's easy to find that unknown user if you're pretty fond with his/her username and DP ( display picture ).

6 0
3 years ago
a child's toy consists of a piece of plastic attached to a spring. the spring is compressed against the floor a distance of 2.0
Nat2105 [25]

Answer:

1.7N

Explanation:

Force = kx

Where x = spring compression and

K = spring constant

K =85N/m

x = 2.0cm / 100

= 0.02m

Force = 85 x 0.02

= 1.7N

5 0
3 years ago
Can i have the physical science grade 12 june 2021 paper (common paper)​
Veseljchak [2.6K]

Answer:

u have to purchase it via online e-commerce platforms

7 0
2 years ago
Read 2 more answers
Which best describes two counteracting forces on an object
Natali5045456 [20]

The correct answer is B two children pulling apart a wishbone

Let me know if you have any questions, and have a nice day!

6 0
3 years ago
Read 2 more answers
Assuming a 8 kilogram bowling ball moving at 2 m/s bounces off a spring at the same speed that had before bouncing what is the a
Naya [18.7K]

a) 32 kg m/s

Assuming the spring is initially at rest, the total momentum of the system before the collision is given only by the momentum of the bowling ball:

p_i = m u = (8 kg)(2 m/s)=16 kg m/s

The ball bounces off at the same speed had before, but the new velocity has a negative sign (since the direction is opposite to the initial direction). So, the new momentum of the ball is:

p_{fB}=m v_b =(8 kg)(-2 m/s)=-16 kg m/s

The final momentum after the collision is the sum of the momenta of the ball and off the spring:

p_f = p_{fB}+p_{fS}

where p_{fS} is the momentum of the spring. For the conservation of momentum,

p_i = p_f\\p_i = p_{fB}+p_{fS}\\p_{fS}=p_i -p_{fB}=16 kg m/s -(-16 kg m/s)=32 kg m/s


b) -32 kg m/s

The change in momentum of bowling ball is given by the difference between its final momentum and initial momentum:

\Delta p=p_{fb}-p_i=-16 kg m/s - 16 kg m/s=-32 kg m/s


c) 64 N

The change in momentum is equal to the product between the average force and the time of the interaction:

\Delta p=F \Delta t

Since we know \Delta t=0.5 s, we can find the magnitude of the force:

F=\frac{\Delta p}{\Delta t}=\frac{-32 kg m/s}{0.5 s}=-64 N

The negative sign simply means that the direction of the force is opposite to the initial direction of the ball.


d) The force calculated in the previous step (64 N) is larger than the force of 32 N.

5 0
3 years ago
Other questions:
  • if you divide a force measured in newtons by a speed measured in in meters per second in what units will the answer be expressed
    11·1 answer
  • a 0.04kg ball tied to a string moves in a circle that has a radius of 0.70 m. If the ball is accelerating 43.2m/s, what is the t
    12·1 answer
  • The temperature of air changes from 0 to 10°C while its velocity changes from zero to a final velocity, and its elevation change
    8·1 answer
  • When a projecting load extends to the rear four or more feet beyond the bed or body of a vehicle in the daytime, the extreme rea
    14·2 answers
  • A rocket travels in the x-direction at speed 0.70c with respect to the earth. An experimenter on the rocket observes a collision
    10·1 answer
  • Action and reaction forces will cancel because they are pushing on the same object toward each other. True or False
    8·2 answers
  • Formula One racers speed up much more quickly than normal passenger vehicles, and they also can stop in a much shorter distance.
    11·1 answer
  • I need help with this<br>​
    6·1 answer
  • Two horizontal pipes have the same diameter, but pipe B is twice as long as pipe A. Water undergoes viscous flow in both pipes,
    6·1 answer
  • Question 4 Multiple Choice Worth 4 points)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!