Answer:
4.3 cm
Explanation:
We are given that
Width,d=70.3

Wavelength,


We have to find the width in cm of the pattern.
The angle for the first minimum m=1


The width of the pattern=
<u>Answer</u>
5) b-c
6) a-b and
e-f
7) f-g
9) a-b = 0 m/s
c-d = 0.6667 m/s
e-f = 0 m/s
f-g = -3 m/s
10) b-c ⇒ The cart is acceleration.
e-f ⇒ The cart is moving backwards with a constant velocity.
<u>Explanation</u>
Answer
5) b-c
In the section b-c the cart is accelerating because the slope of the graph is changing. The gradient that represent velocity is increasing.
6) a-b and e-f
At this sections the distance is not changing at all. This can only mean that the cart is not moving. It is at rest.
7) f-g
At this section the slope is negative meaning the cart is moving back to where it came from.
9) a-b = 0 m/s
At a-b the cart is not moving. So the velocity is zero.
<u> c-d = 0.66667 m/s</u>
Velocity = distance / time
=(50-40)/(40-25)
= 10/15
= 0.6667 m/s
<u> e-f = 0 m/s</u>
At e-f the cart is not moving. So the velocity is zero.
<u> f-g = -3 m/s</u>
Velocity = distance / time
= (60-30)/(65-75)
= 30/-10
= - 3 m/s
10) b-c ⇒ The cart is acceleration.
e-f ⇒ The cart is moving backwards with a constant velocity.
image distance,di=10 cm
object distance,do=20cm
magnification, m=di/do
=10/20
=0.5
since the image is virtual, magnification is negative.
therefore m=-0.5
Assuming that the time needed to cross the ammeter is 1 hour or 3600s, then using coloumb's law,
I x t = F x m / (eq. wt)
Using the given values and formula:
3 x 3600 = 96500 x m / (27/3)
Solving for m,
m = 1.007 g of Al3+
this is due to the existence of other forces called the strong nuclear forces that overcomes the repulsion forces between the protons and keeps the nucleons holding to each other also there is a type of energy that is called the nuclear binding energy and this energy also works on binding the components of the nucleus together