Answer:
0.0031792338 rad/s
Explanation:
= Angle of elevation
y = Height of balloon
Using trigonometry

Differentiating with respect to t we get

Now, with the base at 200 ft and height at 2500 ft
The hypotenuse is

Now y = 2500 ft


The angle is changing at 0.0031792338 rad/s
We make use of the equation: v^2=v0^2+2a Δd. We substitute v^2 equals to zero since the final state is halting the truck. Hence we get the equation -<span>v0^2/2a = Δd. F = m a from the second law of motion. Rearranging, a = F/m
</span>F = μ Fn where the force to stop the truck is the force perpendicular or normal force multiplied by the static coefficient of friction. We substitute, -v0^2/2<span>μ Fn/m</span> = Δd. This is equal to
The term used to describe the quantity of matter that a body possesses is mass.
Answer: 
Explanation:
This problem can be solved by the following equation:

Where:
is the pressure difference between the two ends of the pipe
is the viscosity of oil
is the length of the pipe
is the Rate of flow of the fluid
is the diameter of the pipe
is the radius of the pipe
Soving for
:

Finally:

Answer:
F = 3.20 N
Explanation:
Given:
Work done by child = 80.2 j
Distance that the car moves = 25.0 m
We need to find the force acting on the car.
Solution:
Using work done formula as.

Where:
W = Work done by any object.
F = Force (push or pull)
d = distance that the object moves.
Substitute
in work done formula.


F = 3.20 N
Therefore, force acting on the car F = 3.20 N