The answer is: Salt! :)
Have a great day!
Answer:

Explanation:
Assume that the distance travelled initially is d.
In order to stop the block you need some external force which is friction.
If we use the law of energy conservation:

a)
Looking at the formula you can see that the mass doesn't affect the distance travelled, as lng as the initial velocity is constant (Which indicates that the force must be higher to push the block to the same speed) therefore the distance is the same.
b) If the velocity is doubled, then the distance travelled is multiplied by 4, because the distance deppends on the square of the velocity.
Answer:
I would have to say B THe su would rise in the west and set in the east But this is just a guess
Electric potential energy, or Electrostatic potential energy, is a potential energy that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system.
Answer:
1.33
Explanation:
speed of light in vacuum, c = 3 x 10^8 m/s
speed of light in medium, v = 2.26 x 10^8 m/s
The refractive index of the medium is given by
μ = speed of light in vacuum / speed of light in medium
μ = (3 x 10^8) / (2.26 x 10^8)
μ = 1.33