The quantity of heat must be removed is 1600 cal or 1,6 kcal.
<h3>Explanation : </h3>
From the question we will know if the condition of ice is at the latent point. So, the heat level not affect the temperature, but it can change the object existence. So, for the formula we can use.

If :
- Q = heat of latent (cal or J )
- m = mass of the thing (g or kg)
- L = latent coefficient (cal/g or J/kg)
<h3>Steps : </h3>
If :
- m = mass of water = 20 g => its easier if we use kal/g°C
- L = latent coefficient = 80 cal/g
Q = ... ?
Answer :

So, the quantity of heat must be removed is 1600 cal or 1,6 kcal.
<u>Subject : Physics </u>
<u>Subject : Physics Keyword : Heat of latent</u>
Answer:
d=360 miles
Donna lives 360 miles from the mountains.
Explanation:
Conceptual analysis
We apply the formula to calculate uniform moving distance[
d=v*t Formula (1)
d: distance in miles
t: time in hours
v: speed in miles/hour
Development of problem
The distance Donna traveled to the mountains is equal to the distance back home, equal to d,then,we pose the kinematic equations for d, applying formula 1:
travel data to the mountains: t₁= 8 hours , v=v₁
d= v₁*t₁=8*v₁ Equation (1)
data back home : t₂=4hours , v=v₂=v₁+45
d=v₂*t₂=(v₁+45)*4=4v₁+180 Equation (2)
Equation (1)=Equation (2)
8*v₁=4v₁+180
8*v₁-4v₁=180
4v₁=180
v₁=180÷4=45 miles/hour
we replace v₁=45 miles/hour in equation (1)
d=8hour*45miles/hour
d=360 miles
Answer:
B
Explanation:
Protons have a positive electrical charge of +1,
Electrons have a negative charge of -1,
Neutrons have a neutral charge of about 0.
Answer:
Explanation:
Using the equation of motion v² = u²+2as
v is the final velocity = 40m/s
u is the iniyail velocity 0m/s
a is the acceleration
s is the displacement
Substituting in the formula;
40² = 0²+2a(50)
1600 = 100a
Divide both sides by 100
100a/100 = 1600/100
a = 16
Hence the car acceleration is 16m/s²
Pretty sure it’s halogens , or groups 14-17