Answer:
M₂ = M then L₂ = L
M₂> M then L₂ = \frac{M}{M_{2}} L
Explanation:
This is a static equilibrium exercise, to solve it we must fix a reference system at the turning point, generally in the center of the rod. By convention counterclockwise turns are considered positive
∑ τ = 0
The mass of the rock is M and placed at a distance, L the mass of the rod M₁, is considered to be placed in its center of mass, which by uniform e is in its geometric center (x = 0) and the triangular mass M₂, with a distance L₂
The triangular shape of the second object determines that its mass can be considered concentrated in its geometric center (median) that tapers with a vertical line if the triangle is equilateral, the most used shape in measurements.
M L + M₁ 0 - m₂ L₂ = 0
M L - m₂ L₂ = 0
L₂ =
L
From this answer we have several possibilities
* if the two masses are equal then L₂ = L
* If the masses are different, with M₂> M then L₂ = \frac{M}{M_{2}} L
Answer:
9. A 1500kg car traveling +6m/s with a 2000kg truck at rest. The vehicles collide, but do not stick together. The car has a velocity -3m/s after the collision. What is the velocity of the truck? a. What type of collision occurred above?
Answer:
We know the momentum after the collision MUST be equal to the momentum BEFORE the collision.
Momentum is a VECTOR quantity having both magnitude and direction. The first ball has momentum P =m*v = 2*4 = 8 at 90degrees. The second ball has momentum P = 1*8 = 8 at -90 or 270 degrees. They sum to zero when you perform vector addition.
Explanation:
Answer:
Explanation:
Check the attachment for solution
Liter
The Basic Unit for Volume
The liter, which is the basic unit of volume, was originally defined as the volume occupied by 1 kilogram of water, but today it's simply one-thousandth of a cubic meter
BRAINLY PLS