Answer:

Explanation:
We need to find the energy for an electron to jump from n = 1 to n = 4.
The energy in transition from 1 state to another is given by :

The difference in energy for n = 1 to n = 4 is:

So, the required energy is equal to
.
Answer:
The potential energy of the more massive one is twice that of the other.
Explanation:
Potential energy is given by
<em>PE</em> = <em>mgh</em>
where <em>m</em> = mass of body, <em>g</em> = acceleration of gravity and <em>h</em> = height or elevation.
For the less massive car, let the mass be
. Then its <em>PE</em> is

For the massive car, let the mass be
. Its <em>PE</em> is

But 

Hence, the potential energy of the more massive one is twice that of the other.
Answer:
= 4.3 × 10 ⁻¹⁴ m
Explanation:
The alpha particle will be deflected when its kinetic energy is equal to the potential energy
Charge of the alpha particle q₁= 2 × 1.6 × 10⁻¹⁹ C = 3.2 × 10⁻¹⁹ C
Charge of the gold nucleus q₂= 79 × 1.6 × 10⁻¹⁹ = 1.264 × 10⁻¹⁷C
Kinetic energy of the alpha particle = 5.28 × 10⁶ × 1.602 × 10⁻¹⁹ J ( 1 eV)
= 8.459 × 10⁻¹³
k electrostatic force constant = 9 × 10⁹ N.m²/c²
Kinetic energy = potential energy = k q₁q₂ / r where r is the closest distance the alpha particle got to the gold nucleus
r = ( 9 × 10⁹ N.m²/c² × 3.2 × 10⁻¹⁹ C × 1.264 × 10⁻¹⁷C) / 8.459 × 10⁻¹³
= 4.3 × 10 ⁻¹⁴ m
Answer:
The angle between the blue beam and the red beam in the acrylic block is

Explanation:
From the question we are told that
The refractive index of the transparent acrylic plastic for blue light is 
The wavelength of the blue light is 
The refractive index of the transparent acrylic plastic for red light is 
The wavelength of the red light is 
The incidence angle is 
Generally from Snell's law the angle of refraction of the blue light in the acrylic block is mathematically represented as
![r_F = sin ^{-1}[\frac{sin(i) * n_a }{n_F} ]](https://tex.z-dn.net/?f=r_F%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%28i%29%20%2A%20%20n_a%20%7D%7Bn_F%7D%20%5D)
Where
is the refractive index of air which have a value of
So
![r_F = sin ^{-1}[\frac{sin(45) * 1 }{ 1.497} ]](https://tex.z-dn.net/?f=r_F%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%2845%29%20%2A%20%201%20%7D%7B%201.497%7D%20%5D)

Generally from Snell's law the angle of refraction of the red light in the acrylic block is mathematically represented as
![r_C = sin ^{-1}[\frac{sin(i) * n_a }{n_C} ]](https://tex.z-dn.net/?f=r_C%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%28i%29%20%2A%20%20n_a%20%7D%7Bn_C%7D%20%5D)
Where
is the refractive index of air which have a value of
So
![r_C = sin ^{-1}[\frac{sin(45) * 1 }{ 1.488} ]](https://tex.z-dn.net/?f=r_C%20%3D%20%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bsin%2845%29%20%2A%20%201%20%7D%7B%201.488%7D%20%5D)

The angle between the blue beam and the red beam in the acrylic block

substituting values

