Divide by the molar mass of HCl which is 36.5g/mol grams cancels out and you are left with 1.99 mol.
For the conversions
I will start with pressure
1atm=101.3kPa
x =700kPa
x=700kPa/101.3kPa
x=6.91atm
Temperature
273K+30.00C
303K
Volume
1L=1000ml
x =50ml
x=0.05L
PV=nRT
6.91*0.05=n*0.08206*303
0.3455=24.86418n
0.3455/24.86418=n
0.0138=n
number of moles = 0.0138moles
Note: 0.08206 is the gas constant in this case
The given reaction:
<span>ch3ch2cooh (aq) ↔ ch3ch2coo- (aq) + h+ (aq)
is called a reversible reaction.
This means that, the reaction does not reach an end point.
In this type of reactions, reactants react together to form products, while products combine together to form reactants.
So, the reaction proceeds in both direction forming both reactants and products.</span>
Answer:
cellular respiration
Explanation:
All exergonic processes produced in the cell, through which substances oxidize and chemical energy is released, are grouped under the name of cellular respiration, but to break down an organic molecule the cells employ, mainly dehydrogenations that can be carried carried out in the presence or absence of atmospheric O2 oxygen. There are therefore two types of breathing: aerobic respiration and anaerobic respiration. The latter also called fermentation.
Aerobic respiration (oxidative phosphorylation)
- Use molecular O2.
- It degrades glucose to CO2 and H2O
- Exergonic
- Recovers about 50% of chemical energy
- Present in most organisms.
- It uses enzymes located in the mitochondria.
Explanation:
Relation between pressure, latent heat of fusion, and change in volume is as follows.

Also, 
where,
is the difference in specific volumes.
Hence, 
As,
= 22.0 J/mol K
And,
...... (1)
where,
= density of water
= density of ice
M = molar mass of water =
Therefore, using formula in equation (1) we will calculate the volume of fusion as follows.
=
=
Therefore, calculate the required pressure as follows.

=
or, = 145 bar/K
Hence, for change of 1 degree pressure the decrease is 145 bar and for 4.7 degree change dP =
= 681.5 bar
Thus, we can conclude that pressure should be increased by 681.5 bar to cause 4.7 degree change in melting point.