Explanation:
1. subatomic particles.
2.proton, electron and neutron
3.The atomic mass of an element is actually the sum of the MASSES of protons and neutrons in AN atom of that element
4.An element's atomic number is equal to the number of protons in the nuclei of any of its atoms
5. Number of Protons = Atomic Number
Number of Electrons = Number of Protons = Atomic Number
Number of Neutrons = Mass Number - Atomic Number
For krypton:
Number of Protons = Atomic Number = 36
Number of Electrons = Number of Protons = Atomic Number = 36
Number of Neutrons = Mass Number - Atomic Number = 84 - 36 = 48
6. electron, lightest stable subatomic particle known. It carries a negative charge of 1.602176634 × 10−19 coulomb, which is considered the basic unit of electric charge. The rest mass of the electron is 9.1093837015 × 10−31 kg
7.The center of the atom is called a nucleus
8. Negatively charged particles are found in multiple layers outside the nucleus of the atom. These particles are called electrons, and they orbit in various energy levels around the atom's nucleus.
9. A charged particle is also called an ion
<u>Answer:</u> The rate law for the reaction is ![\text{Rate}=k'[H+][H_2O_2][Br^-]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%27%5BH%2B%5D%5BH_2O_2%5D%5BBr%5E-%5D)
<u>Explanation:</u>
Rate law is the expression which is used to express the rate of the reaction in terms of the molar concentration of reactants where each term is raised to the power their stoichiometric coefficient respectively from a balanced chemical equation.
In a mechanism of the reaction, the slow step in the mechanism determines the rate of the reaction.
The chemical equation for the oxidation of bromide ions by hydrogen peroxide in aqueous acid solution follows:

The intermediate reaction of the mechanism follows:
<u>Step 1:</u> 
<u>Step 2:</u> 
<u>Step 3:</u> 
As, step 2 is the slow step. It is the rate determining step
Rate law for the reaction follows:
......(1)
As,
is not appearing as a reactant in the overall reaction. So, we apply steady state approximation in it.
Applying steady state approximation for
from step 1, we get:
![[H_3O_2^+]=K[H^+][H_2O_2]](https://tex.z-dn.net/?f=%5BH_3O_2%5E%2B%5D%3DK%5BH%5E%2B%5D%5BH_2O_2%5D)
Putting the value of
in equation 1, we get:
![\text{Rate}=k.K[H^+][H_2O_2][Br^-]\\\\\text{Rate}=k'[H+][H_2O_2][Br^-]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk.K%5BH%5E%2B%5D%5BH_2O_2%5D%5BBr%5E-%5D%5C%5C%5C%5C%5Ctext%7BRate%7D%3Dk%27%5BH%2B%5D%5BH_2O_2%5D%5BBr%5E-%5D)
Hence, the rate law for the reaction is ![\text{Rate}=k'[H+][H_2O_2][Br^-]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%27%5BH%2B%5D%5BH_2O_2%5D%5BBr%5E-%5D)
Melting
Melting is a change in property of matter from solid to liquid
Matter is anything that occupies space and has mass. Thus, there are fundamentally three types of matter which is solid liquid and gas. But why do gases and liquids diffuse and not solids? It is because of the molecular structure of these components of matter. If we examine the molecular structure of gas the molecules are highly scattered and liquid has also almost the same structure as mediocrely scattered that these particles can easily slip through other substances unlike solid which is entirely intact. <span> </span>
Answer:
49.86 × 10²³ atoms of Al
Explanation:
Given data:
Number of moles of Al = 8.28 mol
Number of atoms = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For 8.28 moles of Al:
1 mole = 6.022 × 10²³ atoms of Al
8.28 mol×6.022 × 10²³ atoms / 1mol
49.86 × 10²³ atoms of Al
Answer:
Concentration of A at equilibrium = 1 - 0.5 = 0.5 M
Explanation:

Equilibrium constant = 0.5
Initial concentration of A = 1 M
Initial 1 0 0
At equi. 1-x x x
Equilibrium constant = ![\frac{[B][C]}{[A]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BB%5D%5BC%5D%7D%7B%5BA%5D%7D)

on solving,
x = 0.5 M
Concentration of A at equilibrium = 1 - 0.5 = 0.5 M