Answer:
the length of stretched spring in cm is 22
Explanation:
given information:
spring length, x1 = 20 cm = 0.2 m
force, F = 100 N
the length of spring streches, x2 = 22 cm = 0.22 m
According to Hooke's law
F = - kΔx
k = F/*=(x2-x1)
= 100/(0.22 - 0.20)
= 5000 N/m
if the spring is now suspended from a hook and a 10.2-kg block is attached to the bottom end
m = 10.2 kg
W = m g
= 10.2 x 9.8
= 99.96 N
F = - k Δx
Δx = F / k
= 99.96 / 5000
= 0.02
Δx = x2- x1
x2 = Δx + x1
= 0.20 + 0.02
= 0.22 m
= 22 cm
Answer:
the light emitting must be of greater wavelength
Explanation:
For this exercise we must use the Planck equation
E = h f
And the speed of light
c = λ f
f = c / λ
We replace
E = h c / λ
The wavelength of the green light is of the order of 500 nm, let's calculate the energy
E = 6.63 10⁻³⁴ 3 10⁸ /λ
E = 1,989 10⁻²⁵ /λ
λ = 500 nm = 500 10⁻⁹ m
E = 1,989 10⁻²⁵ / 500 10⁻⁹
E = 3,978 10⁻¹⁹ J
That is the energy of the transition for a transition is an intermediate state the energy must be less, this implies that the wavelength must increase. For the explicit case of a state with half of this energy
= E / 2
= 3,978 10⁻¹⁹ / 2 = 1,989 10⁻¹⁹
Let's clear and calculate
λ = h c / E
λ = 1,989 10⁻²⁵ / 1,989 10⁻¹⁹
λ = 1 10⁻⁶ m
Let's reduce to nm
λ = 1000 nm
This wavelength is in the infrared region
the light emitting must be of greater wavelength
Answer: negative acceleration
Explanation:
Acceleration is speeding up, the ball is slowing down making it negative acceleration
Answer:
I have no clue what's really going on I'm just here to get answer maybe I will just try to get an answer but I have no clue I'm sorry I am confused and dint really know what to do here.
The centripetal force, Fc, is calculated through the equation,
Fc = mv²/r
where m is the mass,v is the velocity, and r is the radius.
Substituting the known values,
Fc = (112 kg)(8.9 m/s)² / (15.5 m)
= 572.36 N
Therefore, the centripetal force of the bicyclist is approximately 572.36 N.