Answer:
ACTION REACTION FORCES
Explanation:
When there is an action frce there will be a reaction force
Sure. The acceleration may be decreasing, but as long as it stays
in the same direction as the velocity, the velocity increases.
I think you meant to ask whether the body can have increasing velocity
with negative acceleration. That answer isn't simple either.
If the body's velocity is in the positive direction, then positive acceleration
means speeding up, and negative acceleration means slowing down.
BUT ... If the body's velocity is in the negative direction, then positive
acceleration means slowing down, and negative acceleration means
speeding up.
I know that's confusing.
-- Take a piece of scratch paper, write a 'plus' sign at one edge and
a 'minus' sign at the other edge. Those are the definitions of which
direction is positive and which direction is negative.
-- Then sketch some cars ... one traveling in the positive direction, and
one driving in the negative direction. Those are the directions of the
velocities.
-- Now, one car at a time:
. . . . . first push on the back of the car, in the direction it's moving;.
. . . . . then push on the front of the car, against its motion.
Each push causes the car to accelerate in the direction of the push.
When you see it on paper, all the positive and negative velocities
and accelerations will come clear for you.
Answer:
Explanation:
The relationship between angle and wavelength for maxima and minima in Young's double slit experiment is given by
For constructive interference

For Destructive interference

where 

m=order of maxima and minima
for second order maxima i.e. 
For smallest separation taking 



Answer: The current must be equal to
amps, or ~0.9574 amps.
Explanation:
You can find the current in amperes using ohms and watts from this formula:

Where P represents power in watts, R represents resistance in ohms, and I represents current in amperes.
You can then substitute 60 and 55 into the equation to find I:

Then, simplify the denominator:

Rationalize the denominator:

Simplify the numerator by finding its factors:

The current must be equal to
amps, or ~0.9574 amps.