Answer:
A. Speed
Explanation:
Speed is the magnitude of velocity, which is given in the question. Velocity is a vector quantity and therefore has both a magnitude and a direction. Only the former is implied in the question.
Answer:
f1 = 58.3Hz, f2 = 175Hz, f3 = 291.6Hz
Explanation:
lets assume speed of sound is 350 m/s.
frequencies of a standing wave modes of an open-close tube of length L
fm = m(v/4L)
where m is 1,3,5,7......
and fm = mf1
where f1 = fundamental frequency
so therefore: f1 = 350 x 4 / 1.5
f1 = 58.3Hz
f2 = 3 x 58.3
f2 = 175Hz
f3 = 5 x 58.3
f3 = 291.6Hz
Ruff's image is 50m behind the mirror surface and the image is also 3m tall.
This is because it is a plane mirror.
Answer:
The lens to be used for the objective is lens A
Explanation:
The objective of a compound microscope
The focal length of the lens used for the objective = 1/(magnification obtained)
The focal length of most modern is equal to the tube length
The range of sizes for the focal length of a microscope is between 2 mm and 40 mm
Therefore, the appropriate lens to be used for the objective of the compound is lens A that has a focal length of 0.50 cm = 5 mm
Answer:
(a). The work done is 7001 MeV.
(b). The momentum of this proton is
.
Explanation:
Given that,
Speed = 0.993 c
We need to calculate the work done
Using work energy theorem
The work done is equal to the kinetic energy relative to the proton


Put the value into the formula




(b). We need to calculate the momentum of this proton
Using formula of momentum

Put the value into the formula




Hence, (a). The work done is 7001 MeV.
(b). The momentum of this proton is
.