To solve this problem we will apply the concepts related to wavelength as the rate of change of the speed of the wave over the frequency. Mathematically this is

Here,
v = Wave velocity
f = Frequency,
Replacing with our values we have that,

\lambda = 0.68m
The distance to move one speaker is half this

Therefore the minimum distance will be 0.34m
Answer:
Currently in the united states using parallel system
Explanation:
because you can walk with the twomodes with internal combustion engine or running on electric power.
Answer:he formula for average speed is (total distance/total time)
the y-component does not matter in this problem. so do 6.26(cos45)=4.43m/s to find the x-component velocity which is constant throughout the duration of the flight. the total distance is 2L because he travels distance L twice.
the total time is ((time in water)+(time out of water)) since you dont have time you must eliminate it. to do this you need (distance)/(time)=velocity
solve for time and you get T=D/V
time in water is L/3.52 and time out of water is L/4.43
add them together and you get (4.43L+3.52L)/(15.59) = 7.95L/15.59
that value is your total time
divide you total distance (2L) by total time (7.95L/15.59) and the Ls cancel out and you get
(31.18)/(7.95) = 3.92 m/s = Average Speed
Explanation:
4. The Coyote has an initial position vector of
.
4a. The Coyote has an initial velocity vector of
. His position at time
is given by the vector

where
is the Coyote's acceleration vector at time
. He experiences acceleration only in the downward direction because of gravity, and in particular
where
. Splitting up the position vector into components, we have
with


The Coyote hits the ground when
:

4b. Here we evaluate
at the time found in (4a).

5. The shell has initial position vector
, and we're told that after some time the bullet (now separated from the shell) has a position of
.
5a. The vertical component of the shell's position vector is

We find the shell hits the ground at

5b. The horizontal component of the bullet's position vector is

where
is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for
:

A, electromagnetic radiation