Answer:
It is called <em>Pnictogens</em><em>.</em>
Explanation:
This word is fro a greek word called <em>p</em><em>n</em><em>i</em><em>g</em><em>e</em><em>i</em><em>n</em><em> </em>which means <em>c</em><em>h</em><em>o</em><em>k</em><em>i</em><em>n</em><em>g</em><em> </em>due to a choking property of <em>n</em><em>i</em><em>t</em><em>r</em><em>o</em><em>g</em><em>e</em><em>n</em><em> </em><em>g</em><em>a</em><em>s</em><em> </em>when opposed to air with (oxygen).
<span>The constant bombardment of gas molecules against the inside walls of a container produces Pressure.
Explanation:
Pressure is defined as Force per unit Area.
P = F / A
In case of gases, the gas molecules have high Kinetic Energy and they move with high velocity. This cause them to strike against the inside wall of the container. Pressure is directly proportional to temperature. Increase in temperature cause to increase the Kinetic Energy of molecules, Hence, the rate of collisions increases resulting in increasing the pressure.</span>
by making sure they are in the lowest ratio. by adding them to see if they total 100. by checking that they are whole-number multiples. by dividing them by the molar mass.
Answer:
The heat required to change 25.0 g of water from solid ice to liquid water at 0°C is 8350 J
Explanation:
The parameters given are
The temperature of the solid water = 0°C
The heat of fusion, = 334 J/g
The heat of vaporization, = 2260 J/g
Mass of the solid water = 25.0 g
We note that the heat required to change a solid to a liquid is the heat of fusion, from which we have the formula for heat fusion is given as follows;
ΔH = m ×
Therefore, we have;
ΔH = 25 g × 334 J/g = 8350 J
Which gives the heat required to change 25.0 g of water from solid ice to liquid water at 0°C as 8350 J.
Answer:
The change in enthalpy in the combustion of 3 moles of methane = -2406 kJ
Explanation:
<u>Step 1: </u>The balanced equation
CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g) ΔH = -802 kJ
<u>Step 2:</u> Given data
We notice that for 1 mole of methane (CH4), we need 2 moles of O2 to produce : 1 mole of CO2 and 2 moles of H20.
The enthalpy change of combustion, given here as Δ
H
, tells us how much heat is either absorbed or released by the combustion of <u>one mole</u> of a substance.
In this case: we notice that the combustion of 1 mole of methane gives off (because of the negative number), 802.3 kJ of heat.
<u>Step 3: </u>calculate the enthalpy change for 3 moles
The -802 kj is the enthalpy change for 1 mole
The change in enthalpy for 3 moles = 3* -802 kJ = -2406 kJ
The change in enthalpy in the combustion of 3 moles of methane = -2406 kJ