Answer:
magnesium metal
Explanation:
According to the redox reaction equation, six electrons were transferred hence n=6 and F= Faraday's constant 96500C. ∆G° is given hence E°cell can easily be calculated as follows:
From ∆G°= -nFE°cell
E°cell= -∆G°/nF= -(-411×10^3/96500×6)
E°cell= 0.7098V
But for Al3+(aq)/Al(s) half cell, E°= -1.66V from standard table of reduction potentials.
E°cell= E°cathode- E°anode but Al3+(aq)/Al(s) half cell is the cathode
Hence
E°anode=E°cathode - E°cell
E°anode= -1.66-0.7098= -2.37V
This is the reduction potential of Mg hence the anode material was magnesium metal
Answer:
D. N₂O
Explanation:
Let's assume we have 100 g of the compound. That means it consists of 63.61 grams of nitrogen and 36.69 grams of oxygen.
Converting masses to moles:
63.61 g N × (1 mol N / 14.01 g N) = 4.540 mol N
36.69 g O × (1 mol O / 16.00 g O) = 2.293 mol O
Normalize by dividing by the smallest:
4.540 / 2.293 = 1.980 mol N
2.293 / 2.293 = 1.000 mol O
So there is approximately twice as many N atoms as O atoms. The empirical formula is therefore N₂O.
Physical change can change a substance by affecting the form of a chemical change.
Examples of physical changes:
Something cut (Paper)
Molded (Bread)
Boiled (Water)
Mixed (Berries and strawberries)
HOPE THIS HELPS YOU! ^_^
<h3><u>Answer;</u></h3>
Molarity = 0.25 M
<h3><u>Explanation;</u></h3>
Molarity is given by moles/Liter.
First we find moles:
Number of moles = Mass /molar mass
= (10.7g NH4Cl)/(53.5g/mol NH4Cl)
= 0.200 moles NH4Cl
Then we convert to liters:
= (800mL)*(1L/1000mL) = 0.800L
Therefore; molarity = 0.2moles/0.8L
= 0.25M