The two flaws in
her experiment’s design are
<span>- She introduced at least one confounding variable.</span>
<span>- She tried to test multiple hypotheses at a time</span>
In the above mentioned experiment she had to have four samples to prove
four hypotheses, each one separately and not to mix two hypotheses in an alone
sample, that what it brings as consequence is the confusion.
A hypothesis is an educated prediction that can be tested.
Answer:
it gets brighter because the volta increases
Answer:
W=1705.2 J
Explanation:
Given that
mass ,m= 60 kg
Acceleration due to gravity ,g= 9.8 m/s²
Height ,h= 2.9 m
As we know that work done by a force given as
W = F . d
F=force
d=Displacement
W=work done by force
Now by putting the values
F= m g (Acting downward )
d= h (Upward)
W= m g h ( work done against the force)
W= 60 x 9.8 x 2.9 J
W=1705.2 J
Therefore the answer will be 1705.2 J.
Explanation:
Formula for calculating the area of a rectangle A = Length *width
For statement A;
Given area of a rectangle with measured length = 2.536 mm and width = 1.4 mm.
Area of the rectangle = 2.536mm * 1.4mm
Area of the rectangle = 3.5504mm²
The rule of significant figures states that we should always convert the answer to the least number of significant figure amount the given value in question. Since 1.4mm has 2 significant figure, hence we will convert our answer to 2 significant figure.
Area of the rectangle = 3.6mm² (to 2sf)
For statement B;
Given area of a rectangle with measured length = 2.536 mm and width = 1.41 mm.
Area of the rectangle = 2.536mm * 1.41mm
Area of the rectangle = 3.57576mm²
Similarly, Since 1.41mm has 3 significant figure compare to 2.536 that has 4sf, hence we will convert our answer to 3 significant figure.
Area of the rectangle = 3.58mm² (to 3sf)
Based on the conversion, it can be seen that 3.6mm² is greater than 3.58mm², hence the area of rectangle in statement A is greater than the area of the rectangle in statement B.