Answer:
t_{out} =
t_{in}, t_{out} = 
Explanation:
This in a relative velocity exercise in one dimension,
let's start with the swimmer going downstream
its speed is

The subscripts are s for the swimmer, r for the river and g for the Earth
with the velocity constant we can use the relations of uniform motion
= D / 
D = v_{sg1} t_{out}
now let's analyze when the swimmer turns around and returns to the starting point

= D / 
D = v_{sg 2} t_{in}
with the distance is the same we can equalize

t_{out} = t_{in}
t_{out} =
t_{in}
This must be the answer since the return time is known. If you want to delete this time
t_{in}= D / 
we substitute
t_{out} = \frac{v_s - v_r}{v_s+v_r} ()
t_{out} = 
Answer:
24 Coulumbs
Explanation:
Given data
time= 1 minute= 6 seconds
P=2 W
R= 12 ohm
We know that
P= I^2R
P/R= I^2
2/12= I^2
I^2= 0.166
I= √0.166
I= 0.4 amps
We know also that
Q= It
substitute
Q= 0.4*60
Q= 24 Columbs
Hence the charge is 24 Coulumbs
Answer:
17.6 N
Explanation:
The force exerted by the punter on the football is equal to the rate of change of momentum of the football:

where
is the change in momentum of the football
is the time elapsed
The change in momentum can be written as

where
m = 0.55 kg is the mass of the football
u = 0 is the initial velocity (the ball starts from rest)
v = 8.0 m/s is the final velocity
Combining the two equations and substituting the values, we find the force exerted on the ball:

Elements will gain or lose electrons to form a noble gas configuration. Atoms that meet the octet rule are stable because their valence electrons have a relatively low potential energy. Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
Answer:
Honestly i think the answer is B
Explanation: