Rate of change of momentum = impact force
(m*v-m*u)/t = F
4000*20/t = 80000 (note: v is zero as it stopped)
<span>soo, t = 1 sec</span>
Answer:
oh thank you for the free points :D
Explanation:
D. Carbon
Carbon cycle is an example of a biogeochemical cycle. <span>The biogeochemical cycles move through mainly </span>the biotic and abiotic components of the earth<span>, more elaborately the spheres -biospheres, lithosphere, hydrosphere and atmosphere regions of the ecosystem. These biogeochemical cycles, from its terminology and discernable word morphology- involves the biological, geological and chemical components that make out to complete an exact and purposed cycle. The purpose in these cycles are to maintain balance and to ensure the ongoing process of the living and non-living organisms in the environment. These cycles’ help to living organisms survive and thrive. One popular example is the water cycle. </span>
The answer is Dynamite.
Explosive, any substance or device that can be made to produce a volume of rapidly expanding gas in an extremely brief period. Chemical explosives are of two types; detonating, or high explosives and deflagrating, or low, explosives. Detonating explosives, such as TNT and dynamite, are characterized by extremely rapid decomposition and development of high pressure, whereas deflagrating explosives, such as black and smokeless powders, involve merely fast burning and produce relatively low pressures.
Answer:
Mg will replace Ag in a compound
Explanation:
A single replacement reaction is driven by the position of ions on the activity series.
As a rule of thumb, the position of metal ions on the activity series determines their reactivity.
Metal ions that are above another are more reactive and they will displace those that are lower.
Generally, activity increases as we go up the group.
Mg ions are higher than Ag ions on the series so, Mg will displace Ag from a solution.