Answer:
y = 77.74 10⁻⁵ m
Explanation:
For this exercise we can use Newton's second law
F = m a
a = F / m
a = 4.9 10⁻¹⁶ / 9.1 10⁻³¹
a = 0.538 10¹⁵ m / s
This is the vertical acceleration of the electron.
Now let's use kinematics to find the time it takes to move the
x= 29 mm = 29 10⁻³ m
On the x axis
v = x / t
t = x / v
t = 29 10⁻³ / 1.7 10⁷
t = 17 10⁻¹⁰ s
Now we can look for vertical distance at this time.
y =
t + ½ a t²
y = 0 + ½ 0.538 10¹⁵ (17 10⁻¹⁰)²
y = 77.74 10⁻⁵ m
Incomplete question as number of moles and length is missing.So I have assumed 3 moles and length of 0.300 m.So the complete question is here:
Three moles of an ideal gas are in a rigid cubical box with sides of length 0.300 m.What is the force that the gas exerts on each of the six sides of the box when the gas temperature is 20.0∘C?
Answer:
The Force act on each side is 2.43×10⁴N
Explanation:
Given data
n=3 mol
L=0.3 m
Temperature=20.0°C=293 K
To find
Force F
Solution
To get force act on each side it would employ by
F=P.A
Where P is pressure
A is Area
First we need to find pressure by applying ideal gas law
So

So The Force is given as:

The Force act on each side is 2.43×10⁴N
Answer:
0 Newtons
Explanation:
The velocity of the object does not change, it is a constant 54 km/hr. When velocity does not change, acceleration is zero. Using the formula Force = mass x acceleration, we find:
mass = 1200 kg
acceleration = 0
F = (1200)(0) = 0
Answer:
The intensity I₂ of the light beam emerging from the second polarizer is zero.
Explanation:
Given:
Intensity of first polarizer = Io/2
For the second polarizer, the intensity is equal:
