1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetlana [45]
3 years ago
8

Modern wind turbines generate electricity from wind power. The large, massive blades have a large moment of inertia and carry a

great amount of angular momentum when rotating. A wind turbine has a total of 3 blades. Each blade has a mass of m = 5500 kg distributed uniformly along its length and extends a distance r = 45 m from the center of rotation. The turbine rotates with a frequency of f = 11 rpm.
(a) Enter an expression for the total moment of inertia of the wind turbine about its axis of rotation, in terms of the defined quantities.
(b) Calculate the total moment of inertia of the wind turbine about its axis, in units of kilogram meters squared.
(c) Enter an expression for the angular momentum of the wind turbine, in terms of the defined quantities. sig.gif?tid=0N86-9A-18-43-94ED-17253
(d) Calculate the angular momentum of the wind turbine, in units of kilogram meters squared per second.
Physics
1 answer:
ANTONII [103]3 years ago
4 0

Answer:

Explanation:

a )

Each blade is in the form of rod with axis near one end of the rod

Moment of inertia of one blade

= 1/3 x m l²

where m is mass of the blade

l is length of each blade.

Total moment of moment of 3 blades

= 3 x\frac{1}{3}  x m l²

ml²

2 )

Given

m = 5500 kg

l = 45 m

Putting these values we get

moment of inertia of one blade

= 1/3 x 5500 x 45 x 45

= 37.125 x 10⁵ kg.m²

Moment of inertia of 3 blades

= 3 x 37.125 x 10⁵ kg.m²

= 111 .375 x 10⁵ kg.m²

c )

Angular momentum

= I x ω

I is moment of inertia of turbine

ω is angular velocity

ω = 2π f

f is frequency of rotation of blade

d )

I = 111 .375 x 10⁵ kg.m² ( Calculated )

f = 11 rpm ( revolution per minute )

= 11 / 60 revolution per second

ω = 2π f

=  2π  x  11 / 60 rad / s

Angular momentum

= I x ω

111 .375 x 10⁵ kg.m² x  2π  x  11 / 60 rad / s

= 128.23 x 10⁵  kgm² s⁻¹ .

You might be interested in
A. An endothermic reaction i taking place in a test tube. What would you expect to feel when you touch the outside of the test t
inessss [21]

Explanation:

An endothermic reaction is a type of of chemical reaction in which energy is absorbed from the surrounding. The temperature of the surrounding decreases.

An Exothermic reaction is a type of of chemical reaction in which energy is released into the surrounding. The temperature of the surrounding increases.

a)When an endothermic reaction takes place in test tube the temperature of the surrounding(here the outside wall of the test tube) will decrease which can be felt by touching the outside of the test tube.

b) Burning a candle

,Lighting a gas stove and running a car's engine all are example of exothermic reaction because energy is releases into surroundings. Where as using an instant cold pack is an example endothermic reaction in which energy is absorbed from the surrounding.

c) The diagram is of an exothermic reaction because the energy of the reactants is higher than the energy of the products.The difference in the energies of these two is the energy which was being released on completion of reaction.

6 0
4 years ago
Read 2 more answers
Whats 46/50 as a percent?​
Gelneren [198K]

92 percent because you multiply it by 2

3 0
4 years ago
Read 2 more answers
Why is your State have dimensions ​
Ilya [14]

Answer:

not sure you

Explanation:

8 0
4 years ago
What topic in a biology textbook is directly related to physics
nataly862011 [7]
osmosis and cellular transport - the physics of molecular movement, kinetic energy and diffusion.
4 0
4 years ago
A 0.0550-kg ice cube at −30.0°C is placed in 0.400 kg of 35.0°C water in a very well-insulated container. What is the final temp
KatRina [158]

Answer:

19.34°C

Explanation:

When the ice cube is placed in the water, heat will be transferred from the hot water to it such that the heat gained (Q₁) by the ice is equal to the heat lost(Q₂) by the hot water and a final equilibrium temperature is reached between the melted ice and the cooling/cooled hot water. i.e

Q₁ = -Q₂                  ----------------------(i)

{A} Q₁ is the heat gained by the ice and it is given by the sum of ;

(i) the heat required to raise the temperature of the ice from -30°C to 0°C. This is given by [m₁ x c₁ x ΔT]

<em>Where;</em>

m₁ = mass of ice = 0.0550kg

c₁ = a constant called specific heat capacity of ice = 2108J/kg°C

ΔT₁ = change in the temperature of ice as it melts from -30°C to 0°C = [0 - (-30)]°C = [0 + 30]°C = 30°C

(ii) and the heat required to melt the ice completely - This is called the heat of fusion. This is given by [m₁ x L₁]

Where;

m₁ = mass of ice = 0.0550kg

L₁ = a constant called latent heat of fusion of ice = 334 x 10³J/kg

Therefore,

Q₁ = [m₁ x c₁ x ΔT₁] + [m₁ x L₁]        ------------------(ii)

Substitute the values of m₁, c₁, ΔT₁ and  L₁ into equation (ii) as follows;

Q₁ = [0.0550 x 2108 x 30] + [0.0550 x 334 x 10³]

Q₁ = [3478.2] + [18370]

Q₁ = 21848.2 J

{B} Q₂ is the heat lost by the hot water and is given by

Q₂ = m₂ x c₂ x ΔT₂                -----------------(iii)

Where;

m₂ = mass of water = 0.400kg

c₂ = a constant called specific heat capacity of water = 4200J/Kg°C

ΔT₂ = change in the temperature of water as it cools from 35°C to the final temperature of the hot water (T) = (T - 35)°C

Substitute these values into equation (iii) as follows;

Q₂ = 0.400 x 4200 x (T - 35)

Q₂ = 1680 x (T-35) J

{C} Now to get the final temperature, substitute the values of Q₁ and Q₂ into equation (i) as follows;

Q₁ = -Q₂

=> 21848.2 = - 1680 x (T-35)

=> 35 - T  = 21848.2 / 1680

=> 35 - T  = 13

=> T  = 35 - 13

=> T  = 22

Therefore the final temperature of the hot water is 22°C.

Now let's find the final temperature of the mixture.

The mixture contains hot water at 22°C and melted ice at 0°C

At this temperature, the heat (Q_{W}) due to the hot water will be equal to the negative of the one (Q_{I}) due to the melted ice.

i.e

Q_{W} = -Q_{I}             -----------------(a)

Where;

Q_{I} = m_{I} x c_{I} x ΔT_{I}         [m_{I} = mass of ice, c_{I} = specific heat capacity of melted ice which is now water and ΔT_{I} = change in temperature of the melted ice]

and

Q_{W} = m_{W} x c_{W} x ΔT_{W}    

[m_{W} = mass of water, c_{W} = specific heat capacity of water and ΔT_{W} = change in temperature of the water]

Substitute the values of Q_{W} and Q_{I} into equation (a) as follows

m_{W} x c_{W} x ΔT_{W}   =  - m_{I} x c_{I} x ΔT_{I}

Note that c_{W} and c_{I} are the same since they are both specific heat capacities of water. Therefore, the equation above becomes;

m_{W} x ΔT_{W}   = -m_{I} x ΔT_{I}   -----------------------(b)

Now, let's analyse ΔT_{W} and ΔT_{I}. The final temperature (T_{F}) of the two kinds of water(melted ice and cooled water) are now the same.

=> ΔT_{W} = change in temperature of water = final temperature of water(T_{F}) - initial temperature of water(T_{IW})

ΔT_{W} = T_{F} - T_{IW}

Where;

T_{IW} = 22°C           [which is the final temperature of water before mixture]

=> ΔT_{I} = change in temperature of melted ice = final temperature of water(T_{F}) - initial temperature of melted ice (T_{II})

ΔT_{I} = T_{F} - T_{II}

T_{II} = 0°C     (Initial temperature of the melted ice)

Substitute these values into equation (b) as follows;

m_{W} x ΔT_{W}   =  - m_{I} x ΔT_{I}

0.400 x (T_{F} - T_{IW}) = -0.0550 x (T_{F} - T_{II})

0.400 x (T_{F} - 22) = -0.0550 x (T_{F} - 0)

0.400 x (T_{F} - 22) = -0.0550 x (T_{F})

0.400T_{F} - 8.8 = -0.0550T_{F}

0.400T_{F} + 0.0550T_{F} =  8.8  

0.455T_{F} = 8.8

T_{F} = 19.34°C

Therefore, the final temperature of the mixture is 19.34°C

8 0
3 years ago
Other questions:
  • An experiment is conducted in which red light is diffracted through a single slit. Listed below are alterations made, one at a t
    6·1 answer
  • `
    12·2 answers
  • What are the requirement for a valid hypothesis ?
    14·1 answer
  • If the current flowing through an electric heater increases from 6 to 12 amp while the voltage remains the same, the heat produc
    6·2 answers
  • An object weighs 32 newtons. What is its mass if a gravitometer indicates that g = 8.25 m/s2?
    10·1 answer
  • If the frequency of a wave is 25Hz, what is the period of 1 wave?
    10·2 answers
  • Imagin you have mixed together some sand and salt Based on the venn diagram this mixture would be placed where ​
    11·1 answer
  • What are 5 hazards of static electricity?​
    10·1 answer
  • Starting from rest a car travels a distance 60km at a uniform acceleration of 2ms-2. How much time it takes?
    9·1 answer
  • From fastest to slowest, which of the following lists describes the speed at which sound tends to travel in different materials?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!