Answer:
If the rifle is held loosely away from the shoulder, the recoil velocity will be of -8.5 m/s, and the kinetic energy the rifle gains will be 81.28 J.
Explanation:
By momentum conservation, <em>and given the bullit and the recoil are in a straight line</em>, the momentum analysis will be <em>unidimentional</em>. As the initial momentum is equal to zero (the masses are at rest), we have that the final momentum equals zero, so

now we clear
and use the given data to get that

<em>But we have to keep in mind that the bullit accelerate from rest to a speed of 425 m/s</em>, then <u>if the rifle were against the shoulder, the recoil velocity would be a fraction of the result obtained</u>, but, as the gun is a few centimeters away from the shoulder, it is assumed that the bullit get to its final velocity, so the kick of the gun, gets to its final velocity
too.
Finally, using
we calculate the kinetic energy as

The first successful flyby of Venus was performed by NASA's Mariner 2 spacecraft on 14 December 1962, following failed attempts by both the Soviet Union and the USA. The first successful landing was the Soviet Venera 4 lander, which touched down on the surface on 18 October 1967
Answer:
- The velocity component in the flow direction is much larger than that in the normal direction ( A )
- The temperature and velocity gradients normal to the flow are much greater than those along the flow direction ( b )
Explanation:
For a steady two-dimensional flow the boundary layer approximations are The velocity component in the flow direction is much larger than that in the normal direction and The temperature and velocity gradients normal to the flow are much greater than those along the flow direction
assuming Vx ⇒ V∞ ⇒ U and Vy ⇒ u from continuity equation we know that
Vy << Vx
D.) Because it has a definite composition...