<h2>
Person must have 8.18 m/s to catch the ball</h2>
Explanation:
Consider the vertical motion of ball
We have equation of motion s = ut + 0.5at²
Initial velocity, u = 12 m/s
Acceleration, a = -9.81 m/s²
Displacement, s = -25 m
Substituting
-25 = 12 x t + 0.5 x -9.81 x t²
4.905 t² -12t - 25 = 0
t = 3.79 sec
Ball hits ground after 3.79 seconds.
So person need to cover 31 m in 3.79 seconds
Consider the horizontal motion of person
We have equation of motion s = ut + 0.5at²
Initial velocity, u = ?
Acceleration, a = 0 m/s²
Displacement, s = 31 m
Time, t = 3.79 seconds
Substituting
31 = u x 3.79 + 0.5 x 0 x 3.71²
u = 8.18 m/s
Person must have 8.18 m/s to catch the ball
Answer : 5m/s
Explanation:the formular for velocity is distance /time or you can say displacement /time. Then it would then be
100/20 =5m/s
Step 2
step 5
step 4
step 6
step 1
step 3
thank me later
For part a)
Since the conical surface is not exposed to the radiation coming from the walls only from the circular plate and assuming steady state, the temperature of the conical surface is also equal to the temperature of the circular plate. T2 = 600 K
For part b)
To maintain the temperature of the circular plate, the power required would be calculated using:
Q = Aσ(T₁⁴ - Tw⁴)
Q = π(500x10^-3)²/4 (5.67x10^-8)(600⁴ - 300⁴)
Q = 5410.65 W