Larger gases produces more spectral lines than the smaller gases because they have more orbitals in their atoms.
Hydrogen has only one orbital in which an electron orbits. At the excited state, that is, when the electron gains energy, the number of energy level it can transcend is very few. For larger elements, they have more orbitals and when excited, they can move from the ground state to other energy levels at which they produce various unique spectral lines.
Answer:
Explanation:The pi-molecular orbitals in propene (CH3-CH=CH2) are essentially the ... This central carbon thus provides two p-orbitals – one for each pi bond – and these two different p-orbitals have to be perpendicular, leading to a twisted structure as shown: ... It all comes down to where the location of the electron-deficient carbon
Yes, but they are tubular organs and like all other organs are made up of tissues
Explanation:
Properties of a solution which are dependent on the ratio of number of solute particles to the number of solvent molecules in a solution are known as colligative properties.
Lowering of vapor pressure and elevation in boiling point are basically two of the colligative properties which indirectly help to measure the molecular weight of a substance.
Thus, we can conclude that molar mass of the solute can be determined by measuring lowering of vapor pressure and elevation in boiling point.