Answer:
0.0659 A
Explanation:
Given that :
( saturation current )
at 25°c = 300 k ( room temperature )
n = 2 for silicon diode
Determine the saturation current at 100 degrees = 373 k
Diode equation at room temperature = I = Io
next we have to determine the value of V at 373 k
q / kT = (1.6 * 10^-19) / (1.38 * 10^-23 * 373) = 31.08 V^-1
Given that I is constant
Io = = 0.0659 A
Its 0.001
0.01 x100 = 1mm
0.001x100=0.1mm
0.1=10mm
1m
Answer:
Explanation:
Given conditions
1)The stress on the blade is 100 MPa
2)The yield strength of the blade is 175 MPa
3)The Young’s modulus for the blade is 50 GPa
4)The strain contributed by the primary creep regime (not including the initial elastic strain) was 0.25 % or 0.0025 strain, and this strain was realized in the first 4 hours.
5)The temperature of the blade is 800°C.
6)The formula for the creep rate in the steady-state regime is dε /dt = 1 x 10-5 σ4 exp (-2 eV/kT)
where: dε /dt is in cm/cm-hr σ is in MPa T is in Kelvink = 8.62 x 10-5 eV/K
Young Modulus, E = Stress, /Strain, ∈
initial Strain,
creep rate in the steady state
but Tinitial = 0
solving the above equation,
we get
Tfinal = 2459.82 hr
Answer:
No, they need to be somewhat flexible so that forces such as turbulance don't shear the wing off.