Answer:
Explanation:
Momentum change for either skater is mΔv = 75.0(5.0) = 375 kg•m/s
As a change in momentum is equal to an impulse
375 = FΔt
F = 375/0.100 = 3750 N
As 3750 N < 4500 N no bones are broken.
Answer:
1470kgm²
Explanation:
The formula for expressing the moment of inertial is expressed as;
I = 1/3mr²
m is the mass of the body
r is the radius
Since there are three rotor blades, the moment of inertia will be;
I = 3(1/3mr²)
I = mr²
Given
m = 120kg
r = 3.50m
Required
Moment of inertia
Substitute the given values and get I
I = 120(3.50)²
I = 120(12.25)
I = 1470kgm²
Hence the moment of inertial of the three rotor blades about the axis of rotation is 1470kgm²
Answer:
25N
Explanation:
Assuming the lab is on earth:
w = mg = 2.5 (9.81) = 25N
Answer:
The correct answer is -
A (the entire green box): Chemical Equation
B (the blue box): Reactants
C (the arrow): Reacts to Form
D (the number): Coefficient
E (the purple box): Products
Explanation:
The chemical reaction of burning methane and oxygen is as follows;
Here, the green part A is the chemical equation that includes various parts that are reactants B, methane, and oxygen, C is an arrow that indicates the formation of products.
2 is here coefficient that indicates the moles of the oxygen which forms carbon dioxide and water in box E is products
Answer:

Explanation:
Since the pulley has a mass concentrated on its rim, the pulley can be considered as a ring.
The moment of inertia of a ring is

The mass on the left is heavier, that is the pulley is rotating counterclockwise.
By Newton's Second Law, the net torque is equal to moment of inertia times angular acceleration.

Here, the net torque is the sum of the weight on the left and the weight on the right.

Applying Newton's Second Law gives the angular acceleration

The relation between angular acceleration and linear acceleration is

Then, the linear acceleration of the masses is
