Weight is different (but mass is the same)
We can use the kinematic equation

where Vf is what we are looking for
Vi is 0 since we start from rest
a is acceleration
and d is the distance
we get
(Vf)^2 = (0)^2 + 2*(2)*(500)
(Vf)^2 = 2000
Vf = about 44.721
or 44.7 m/s [if you are rounding this by significant figures]
Answer:
38.64 feet
Explanation:
x=x0 + vx0t + 1/2axt2
x= 0 + 0 + 1/2 X 32.17 ft/sec2 X 1.55 sec2
x = 38.64 feet
The answer is A) <span>The death rate begins to fall, but birth rates remain high for a time.</span>
Answer:
Well if you want to be sure you should just throw it to the ground so then when he lands he can catch it.
If the cannon throws the banana with the same force the monkey falls
(m.g=Fz <=> m.9,81N/kg=...N).
Then the throw will slow down because of the gravitational pull.
Because the banana cannon is selfmade you can choose what mass the bananas in question have, so let that be the same as the monkeys.
The monkey falls with the speed of 9,81m.s => so it takes the monkey 7,1s to land.
If the cannon can shoot the banana at the same speed the monkey falls then they would cross in the middle.
So to do so you need to throw the bananas with a speed of at least 9,81m.s
Soo ... throw them with a force of that is greater then the gravitational pull and things will work out.
I'm sorry I don't know why I wrote all of this irrelevant information it's 2:21 right now and I'm tired.
kind regards