1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
4 years ago
6

A body A of mass 1.5kg, travelling along the positive x-axis with speed 4.5m/s, collides with

Physics
1 answer:
Lena [83]4 years ago
4 0
REFER TO THE IMAGES for the SOLUTIONS TO YOUR PROBLEM. Each step will be explained here.

When you solve for velocities before or after collision, you need to remember the law of conservation of moment which can be expressed through this formula:

  BEFORE                   AFTER
m1v1+m2v2      =     m1v1 + m2v2

This basically means, the sum of momentum of 2 objects BEFORE collision is equal to the same 2 objects AFTER collision. 

The type of collision we have in your case is a 2D collision, where there is a gliding collision or they touch at an angle. So when you solve these type of problems, you have to consider the x and y components of motion. It makes things easier if you make a table like in the image to sort out your components.


STEP 1: COMPUTE FOR MOMENTUM BEFORE COLLISION for each OBJECT involved.
To solve for momentum, the formula is mass x velocity or mv:

STEP 1a: Body A: The problem states that before collision Body A is moving along the positive X-axis so the velocity will be +4.5 m/s. Notice that the velocity of the y component is 0 m/s. This is because BODY A is moving along the x-axis, with no mention that it deviated from it. 

STEP 1b: Body B: Body B is at rest before collision, that is why it is not moving at all, which means both x and y components are equal to 0.

STEP 1c: Get the sum of all X components and the Sum of Y components.

STEP 2:   COMPUTE FOR MOMENTUM AFTER COLLISION for each OBJECT involved.

Step 2a: BODY A: Notice that we now have an angle. hence the cos and sin. We do this because we are breaking or decomposing the diagonal velocity into its x and y component. To get the x-component you get the cos of the angle and multiply it to the momentum of the diagonal or overall velocity. For y-component, instead of cos, you get the sin. 

Step 2b: BODY B: Here we have unknowns, which we will derive later on. In this step, just plug in what you know into the formula. 

Step 2c: We already know the x and y momentum of the objects BEFORE collision and the law of conversation of momentum states that the momentum AFTER is the same. With this total we can move onto the next step.

STEP 3: Solving for the X and y component of the velocity of BODY B AFTER collision.

Step 3a: Using the formula given in the image, we plug in what we know first. We know the momentum of the BODY A already, so we can put it into the equation. We also know the sum of both momenta and we put that into the equation too. Now all we do is derive the formula. DO NOT FORGET THAT WE ARE TO USE ONLY X COMPONENTS. 

Step 3b: is the same as the previous step but instead, we use Y COMPONENTS only. 

STEP 4: Combining X and Y components to get the resultant velocity:
For this step you need to remember the Pythagorean theorem. This is applied here because when you draw a free body diagram of the velocities, it creates a right triangle where :
the hypotenuse represents the final velocity
the opposite side represents the y-component and;
the adjacent represents the x-component.

Refer to the image for the solution.

STEP 5: Solving for the angle at which BODY B is moving:
For this step you need to remember SOH CAH TOA to find the angle at which BODY B is moving. You already have all the components you need, including the hypotheses. You can use any of the functions, and they should come up with the same approximation. 

FINAL ANSWER: BODY B was moving at 1.35 m/s, 21 degrees above the x-axis. 

You might be interested in
The pitch of the sound produced by a metal wire fixed between two points depends on A) how fast the wire vibrates. B) what type
mrs_skeptik [129]
It depends on A) how fast the wire vibrates because sound is produced by vibration
7 0
3 years ago
Acceleration is positive when you are speeding up.
Vikki [24]

Answer:

B Negative

Explanation:

Its negative because when your going 25 mph your moving faster and when your coming up to the stop sign you will start to slow down going 10 mph then 0 mph when you reach the stop sign so it will be negative.

8 0
2 years ago
The height (in meters) of a projectile shot vertically upward from a point 2 m above ground level with an initial velocity of 22
alexgriva [62]
1) The law of motion of the projectile is
h(t) = 2+22.5 t-4.9 t^2
To find the velocity, we should compute the derivative of h(t):
v(t)=h'(t)=22.5-2\cdot 4.9t=22.5-9.8t
So now we can calculate the speed at t=2 s and t=4 s:
v(2.0s)=22.5-9.8\cdot2.0 =2.9 m/s
v(4.0s)=22.5-9.8\cdot 4.0s=-16.7 m/s
The negative sign in the second speed means the projectile has already reached its maximum height and it is now going downward.

2) The projectile reaches its maximum height when the speed is equal to zero:
v(t)=0
So we have
22.5-9.8 t=0
And solving this we find
t=2.30 s

3) To find the maximum height, we take h(t) and we just replace t with the time at which the projectile reaches the maximum height, i.e. t=2.30 s:
h(2.30 s)=2+22.5\cdot 2.30 -4.9 \cdot (2.30s)^2 = 27.83 m

4) The time at which the projectile hits the ground is the time at which the height is zero: h(t)=0. So, this translates into
2+22.5t -4.9 t^2 = 0
This is a second-order equation, and if we solve it we get two solutions: the first solution is negative, so we can ignore it since it's physically meaningless; the second solution is
t=4.68 s
And this is the time at which the projectile hits the ground.

5) The velocity of the projectile when it hits the ground is the velocity at time t=4.68 s:
v(4.68 s)=22.5-9.8\cdot 4.68 =-23.36  m/s
with negative sign, because it is directed downward.
8 0
4 years ago
A wave has the wavelength equal to 396 nm. what must be the frequency of this wave
Anvisha [2.4K]
This assumes that the wave has velocity c (is light).

7 0
3 years ago
Select the correct statement to describe when a sample of liquid water vaporizes into water vapor
sweet-ann [11.9K]

Answer:

This procces is called evaporation.

Explanation:

When you have liquid water that is transformed into steam, a phase change is called evaporation. The temperature for the evaporation of water depends on the pressure, for example for water at atmospheric pressure the temperature of evaporation is equal to 100°C. as the pressure increases are achieved evaporation temperatures higher. When that happens, the phase change temperature of the water is not increasing, as the process that takes place is the transfer of latent heat and applies only to changes of phase, that is to say at atmospheric pressure when it has 100% of the steam this will be at 101°C.

8 0
4 years ago
Other questions:
  • How much work is done if a force of 50 N is used to move a footstool 3 M?
    15·1 answer
  • A constant net torque is applied to an object. Which one of the following will NOT be constant?
    12·1 answer
  • Electromagnetic and mechanical waves have different characteristics that make them advantageous for certain applications. Select
    14·1 answer
  • If two firecrackers produce a sound level of 81 dBdB when fired simultaneously at a certain place, what will be the sound level
    7·1 answer
  • Match one of the numbers with one of the letters. Thanks!!!!!!!!
    6·1 answer
  • For every action force, there is: A. a net force. B. an unbalanced force. C. a friction force. D. an equal and opposite force. E
    7·1 answer
  • “Why can I sometimes see the moon during the day?“Why can I sometimes see the moon during the day?
    10·1 answer
  • Which element is LEAST likely to react with Magnesium?
    11·1 answer
  • A cannonball explodes in mid-air, fragmenting into several pieces. How does the total
    10·1 answer
  • An electric current in a conductor varies with time according to the expression I(t) = 100 sin (120πt) , where I is in amperes a
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!