Answer:
1.54 atm
Explanation:
By Dalton's Law Of partial pressure,
Total Pressure = Sum of all partial pressures
So,P= P1 + P2 + P3
Therefore, P=0.23+0.42+0.89
=1.54 atm
<h2>Answer : Option C) Joseph is observing the color of the reaction mixture to see whether proteins are present in the given solution.</h2><h3>Explanation :</h3>
An example of qualitative observation is the one where one uses the five senses to identify the changes in the reaction.
Here, when Joseph is studying a reaction mixture he is trying to observe a color change which will confirm that there is proteins present in the reaction mixture or not If there is a color change observed then it will confirm the presence of proteins.
Usually qualitative observations are those which can be easily predicted by using five senses.
Answer:
Weight of boulder = 22,400 gram
Explanation:
Given:
Volume = 8,000 cm³
Density = 2.8
Find:
Weight of boulder
Computation:
Weight of boulder = Volume x Density
Weight of boulder = 8,000 x 2.8
Weight of boulder = 22,400 gram
Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).
Answer:
mm = 1043.33 g/mol
Explanation:
osmotic pressure (π):
∴ π = 17.8 torr = 0.0234 atm
∴ Cb: solute concentration
∴ T = 25°C = 298 K
∴ R = 0.082 atm.L/K.mol
⇒ Cb = π/RT
⇒ Cb = (0.0234 atm)/((0.082 atm.L/K.mol)(298 K))
⇒ Cb = 9.585 E-4 mol/L
molar mass (mm):
⇒ mm = (1.00 g/L)(L/9.585 E-4 mol)
⇒ mm = 1043.33 g/mol