Let volume of empty boat be = 100% = 1V
and mass of boat be M
In water 10%, 0.1V of the volume is submerged.
Mass, m of 1200kg increases the submerging from 10%, 0.1V to 70%, 0.7V
M leads to 0.1V boat submerging
boat submerging.
M + 1200kg leads to 0.7V boat submerging.
This is 60%, 0.6 V increase
By comparison
(M+1200kg) * 0.1V = 0.7V * M
0.1M + 120kg = 0.7M
120kg = 0.7M - 0.1M
120kg = 0.6M
M = (120/0.6)kg
M = 200kg.
The mass of the boat is 200kg.
Answer:

Explanation:
We need to find the frequency of green light having wavelength o
. It can be calculated as follows :

So, the required frequency of green light is equal to
.
300 divide 1.5=200 let me know if this was helpful
Answer:
-6112.26 J
Explanation:
The initial kinetic energy,
is given by
} where m is the mass of a body and
is the initial velocity
The final kinetic energy,
is given by
where
is the final velocity
Change in kinetic energy,
is given by

Since the skater finally comes to rest, the final velocity is zero. Substituting 0 for
and 12.6 m/s for
and 77 Kg for m we obtain

From work energy theorem, work done by a force is equal to the change in kinetic energy hence for this case work done equals <u>-6112.26 J</u>
Answer:
The sound travelled 516 meters before bouncing off a cliff.
Explanation:
The sound is an example of mechanical wave, which means that it needs a medium to propagate itself at constant speed. The time needed to hear the echo is equal to twice the height of the canyon divided by the velocity of sound. In addition, the speed of sound through the air at a temperature of 20 ºC is approximately 344 meters per second. Then, the height of the canyon can be derived from the following kinematic formula:
(1)
Where:
- Height, measured in meters.
- Velocity of sound, measured in meters per second.
- Time, measured in seconds.
If we know that
and
, then the height of the canyon is:



The sound travelled 516 meters before bouncing off a cliff.