<u>Answer:</u> The boiling point of solution is 101.56°C
<u>Explanation:</u>
Elevation in boiling point is defined as the difference in the boiling point of solution and boiling point of pure solution.
The equation used to calculate elevation in boiling point follows:

To calculate the elevation in boiling point, we use the equation:

Or,

where,
Boiling point of pure water = 100°C
i = Vant hoff factor = 1 (For non-electrolytes)
= molal boiling point elevation constant = 0.52°C/m.g
= Given mass of solute (urea) = 27.0 g
= Molar mass of solute (urea) = 60 g/mol
= Mass of solvent (water) = 150.0 g
Putting values in above equation, we get:

Hence, the boiling point of solution is 101.56°C
Answer:
a new scientific discovery that benefits the environment
Answer:
Ca(NO3)2 has the highest boiling point ( option A)
Explanation:
Step 1: Data given
A. 1.25 M Ca(NO3)2
B. 1.25 M KNO3
C. 1.25 M CH3OH
D. 2.50 M C6H12O6
Step 2: Calculate highest boiling point
The boiling point depends on the van't Hoff factor
This shows the particles produced when the substance is dissolved. For non-electrolytes dissolved in water, the van' t Hoff factor is 1.
Ca(NO3)2 → Ca^2+ + 2NO3- → Van't Hoff factor = 3
KNO3 → K+ + NO3- → Van't Hoff factor = 2
CH3OH is a non-elektrolyte → Van't Hoff factor = 1
C6H12O6 is a non-elektrolyte → Van't Hoff factor = 1
Ca(NO3)2 has the highest boiling point