Answer:
294.87 gm CaCl_2
Explanation:
The computation of the mass of calcium chloride is shown below:
But before that following calculations need to be done
Number of moles of chlorine atom is
= 3.20 × 10^24 ÷ 6.022 × 10^23
= 5.314 moles
As we know that
1 mole CaCl_2 have the 2 moles of chlorine atoms
Now 5.341 mole chloride atoms would be
= 1 ÷ 2 × 5.314
= 2.657 moles
Now
Mass of CaCl_2 = Number of moles × molar mass of CaCl_2
= 2.657 moles × 110.98 g/mol
= 294.87 gm CaCl_2
Answer:
the second one ..........
Answer:
of PABA is 0.000022
Explanation:

cM 0 0

So dissociation constant will be:

Give c= 0.055 M and
= ?

![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
![2.96=-log[H^+]](https://tex.z-dn.net/?f=2.96%3D-log%5BH%5E%2B%5D)
![[H^+]=1.09\times 10^{-3}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D1.09%5Ctimes%2010%5E%7B-3%7D)
![[H^+]=c\times \alpha](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Ctimes%20%5Calpha)


Putting in the values we get:


Thus
of PABA is 0.000022
The highest point of a wave<span> is </span>called<span> the </span>crest<span>. ... </span>Wave<span> height is the vertical </span>distance between<span> the </span>crest<span> and trough. Wavelength is the horizontal </span>distance between waves<span> in a series. Wavelength can be measured </span>between two wave crests<span>.</span>