The answer is atomic radii; the size or radii of an atom increases from left to right, versus the ionization energies and electronegativities of atoms which increase from right to left.
<h3>
Answer:</h3>
16.7 g H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2NaOH (s) + CO₂ (g) → Na₂CO₃ (s) + H₂O (l)
[Given] 1.85 mol NaOH
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol NaOH → 1 mol H₂O
Molar Mass of H - 1.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
16.6685 g H₂O ≈ 16.7 g H₂O
Hey there,
Answer:
4 valence electrons.
Hope this helps :D
<em>~Top☺</em>
The reaction involved here would be written as:
2N2 + 3H2 = 2NH3
The equilibrium constant of a reaction is the ratio of the concentrations of the products and the reactants when in equilibrium. The expression for the equilibrium constant of this reaction would be as follows:
Kc = [NH3]^2 / [N2]^2[H2]^3
Kc = 0.40^2 / (0.20)^2 (0.10)^3
Kc = 4000
pH value 1 represents a solution with the lowest OH⁻ion concentration.
<u>Explanation:</u>
pH is given by the expression as the negative logarithm to the base 10 of the concentration of hydrogen ions.
pH = -log₁₀[H⁺]
If the pH is lower than 7, pH < 7 then it is acidic
If the pH = 7, then it is neutral
If the pH > 7, then it is basic
If pH is 1 then the solution is showing mostly acidic character,which is least basic in its character.
So if the pH is 1, which is most acidic and least basic solution that is lowest OH⁻ ion concentration.