Second orbital can hold 8 electrons
I believe the answer is 1-Water :)
The number of electrons it take to fill the mos formed from the combination of the 3s orbitals of two atoms simply is 14 electrons.
<h3>How electrons are distributed in the 3s orbitals.</h3>
The 3s orbital possess two different spherical nodes which is highly connected with the principal quantum number. In order words, it has 2 radial nodes. Also the shape of the 3s orbital is spherical in shape.
That being said, from the context of the above given task, the number of electrons which fill the mos formed from the combination of the 3s orbitals of two atoms is fourteen electrons.
However, the electron configuration of an atom simply is the arrangement of electrons in the electron shell or orbit of the atom of that element.
In conclusion, it can be deduced from above s orbital has a maximum of two electrons and this energy increases as the orbitals increases.
Read more on electron:
brainly.com/question/860094
#SPJ1
BF3 has a boron atom with three outer-shell electrons in its ground state and three fluorine atoms containing seven outer electrons. Further, if we observe closely, one boron electron is unpaired in the ground state. During the formation of this compound, the 2s orbital and two 2p orbitals hybridize.
Name of the Molecule: Boron Trifluoride
Molecular Formula: BF3
Geometry: Trigonal Planar
The total pressure of the mixture of gases is equal to the sum of the pressure of each gas as if it is alone in the container. The partial pressure of a component of the mixture is said to be equal to the product of the total pressure and the mole fraction of the component in the mixture.
Partial pressure of hydrogen gas = 1.24 atm x .25 = 0.31 atm
Partial pressure of the remaining = 1.24 atm x (1-.25) = 0.93 atm