Answer:

Explanation:
Given:
- mass of rocket,

- time of observation,

- mass lost by the rocket by expulsion of air,

- velocity of air,

<u>Now the momentum of air will be equal to the momentum of rocket in the opposite direction: </u>(Using the theory of elastic collision)



1250 decigrams
1 gram = 10 decigrams
Answer:
Waves can be measured using wavelength and frequency. ... The distance from one crest to the next is called a wavelength (λ). The number of complete wavelengths in a given unit of time is called frequency (f). As a wavelength increases in size, its frequency and energy (E) decrease.
Answer:
16.6 N
Explanation:
m = 0.52 kg, v₀ = 0, v = 8.6 m/s, t = 0.27 s
a = (v - v₀)/t
F = ma = m(v - v₀)/t = 0.52 (8.6 - 0)/0.27 = 16.6 N
Answer:
5.5 km
Explanation:
First, we convert the distance from km/h to m/s
910 * 1000/3600
= 252.78 m/s
Now, we use the formula v²/r = gtanθ to get our needed radius
making r the subject of the formula, we have
r = v²/gtanθ, where
r = radius of curvature needed
g = acceleration due to gravity
θ = angle of banking
r = 252.78² / (9.8 * tan 50)
r = 63897.73 / (9.8 * 1.19)
r = 63897.73 / 11.662
r = 5479 m or 5.5 km
Thus, we conclude that the minimum curvature radius needed for the turn is 5.5 km