Answer:
20 m
Explanation:
We'll begin by calculating the kinetic energy of the mass. This can be obtained as follow:
Mass (m) = 10 kg
Velocity (v) = 20 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 10 × 20²
KE = 5 × 400
KE = 2000 J
Finally, we shall the height to which the mass must be located in order to have potential energy that is the same as the kinetic energy. This can be obtained as follow:
Mass (m) = 10 kg
Acceleration due to gravity (g) = 10 m/s²
Potential energy (PE) = Kinetic energy (KE) = 2000 J
Height (h) =..?
PE = mgh
2000 = 10 × 10 × h
2000 = 100 × h
Divide both side by 100
h = 2000 / 100
h = 20 m
Thus, the object must be located at a height of 20 m in order to have potential energy that is the same as the kinetic energy.
here's your correct answer.. please copy it..
Answer:
2) τ = F x torque increases, 3) troque decreases,
4) man approaches the pivot and the child must move away
5) Σ τ = 0
Explanation:
2) when the man moves away from the pivot his torque increases significantly, since his distance increases
τ = F x
τ = m g x
therefore the system rotates faster
3) when the child approaches the pivot, his troque decreases, because the distance decreases
τ = f x
therefore the system must spin slower
4) If we place the man and the child on the side of a scale, the movement must be the man approaches the pivot and the child must move away, so that the torque is the same and the system can reach a balance
5) the rotational equilibrium expression
Σ τ = 0
is the one that describes the equilibrium of a system with several forces
S = ?
U = 0
V = ?
A = 9.81
T = 2
we tryna find s
lets use s = ut + (at^2)/2
ut cancels out since u = 0
(at^2)/2 = (9.81 x 2^2)/2
= 19.62m