Answer
12
Explanation
We have a balanced chemical equation from the question that depicts the formation of water.
2H2+O2-->2H2O,
We can clearly see from the equation that, the formation of 2 moles of water molecules requires the input of 2 moles of hydrogen and 1 mole of Oxygen.
So indirectly, it tells that the moles of water molecules will be double of the moles of Oxygen molecules used in the reaction.
So if we say that 6 moles of oxygen is used and the reaction is going in such a way that hydrogen is not a limiting reactant, then 12 moles of water will be produced.
Hope it help!
Answer:
0.800 mol of O2
Explanation:
<em>Calculate the moles of oxygen produced by the reaction of 0.800mol of carbon dioxide.</em>
The balanced equation for the reaction is given as;
6CO2 + 6H2O → C6H12O6 + 6O2
From the reaction;
6 mol of CO2 produces 6 mol of O2
0.0800 mol of CO2 would produce x mol of O2
6 = 6
0.0800 = x
Solving for x;
x = 6 * 0.800 / 6
x = 0.800 mol
The balanced equation for the above reaction is as follows;
C + H₂O ---> H₂ + CO
stoichiometry of C to H₂O is 1:1
1 mol of C reacts with 1 mol of H₂O
we need to find which is the limiting reactant
2 mol of C and 3.1 mol of H₂O
therefore C is the limiting reactant and H₂O is in excess.
stoichiometry of C to H₂ is 1:1
then number of H₂ moles formed are equal to C moles reacted
number of H₂ moles formed = 2 mol
The given question is incomplete. The complete question is:
The change in entropy is related to the change in the number of moles of gas molecules. Determine the change in moles of gas for each of the reactions and decide if the entropy increases decreases or has little to no change:
A. 
B. 
C. 
D.
Answer: A.
: decreases
B.
: decreases
C.
: no change
D.
: increases
Explanation:
Entropy is defined as the randomness of the system.
Entropy is said to increase when the randomness of the system increase, is said to decrease when the randomness of the system decrease and is said to have no change when the randomness remains same.
In reaction
, as gaseous reactant is changed to solid product, entropy decreases.
In reaction
, as 4 moles of gaseous reactants is changed to 2 moles of gaseous product, entropy decreases.
In reaction
, as 3 moles of gaseous reactants is changed to 3 moles of gaseous product, entropy has no change.
In reaction
, as 1 mole of gaseous reactant is changed to 3 moles of gaseous product, entropy increases.
The answer is C. Assume specific heat to be 4.18 J/g/C