The mass of oxygen reacted/required in this reaction is obtained as 48g.
<h3>What is stoichiometry?</h3>
The term stoichiometry has to do with mass- volume or mass - mole relationship which ultimately depends on the balanced reaction equation.
Now, we have the reaction; S + O2 ------>SO2
If 1 mole of sulfur dioxide contains 22.4 L
x moles of sulfur dioxide contains 33.6L
x = 1.5 moles of sulfur dioxide.
Since the reaction is 1:1, the number if moles of oxygen required/reacted is 1.5 moles.
Mass of oxygen required/reacted = 1.5 moles * 32 g/mol = 48g
Learn more anout stoichiometry: brainly.com/question/9743981
Answer:
+125.4 KJmol-1
Explanation:
∆H C4H10(g) = -2877.6kJ/mol
∆H C(s)=-393.5kJ/mol
∆H H2(g) = -285.8
∆H reaction= ∆Hproducts - ∆H reactants
∆H reaction= (-2877.6kJ/mol) - [4(-393.5kJ/mol) +5(-285.8)]
∆H reaction= +125.4 KJmol-1
Answer:
This question is incomplete, here's the complete question:
<em><u>"Suppose 0.0842g of potassium sulfate is dissolved in 50.mL of a 52.0mM aqueous solution of sodium chromate. Calculate the final molarity of potassium cation in the solution. You can assume the volume of the solution doesn't change when the potassium sulfate is dissolved in it. Round your answer to 2 significant digits."</u></em>
Explanation:
Reaction :-
K2SO4 + Na2CrO4 ------> K2CrO4 + Na2SO4
Mass of K2SO4 = 0.0842 g, Molar mass of K2SO4 = 174.26 g/mol
Number of moles of K2SO4 = 0.0842 g / 174.26 g/mol = 0.000483 mol
Concentration of Na2CrO4 = 52.0 mM = 52.0 * 10^-3 M = 0.052 mol/L
Volume of Na2CrO4 solution = 50.0 ml = 50 L / 1000 = 0.05 L
Number of moles of Na2CrO4 = 0.05 L * 0.052 mol/L = 0.0026 mol
Since number of moles of K2SO4 is smaller than number of moles Na2CrO4, so 0.000483 mol of K2SO4 will react with 0.000483 mol of Na2CrO4 will produce 0.000483 mol of K2CrO4.
0.000483 mol of K2CrO4 will dissociate into 2* 0.000483 mol of K^+
Final concentration of potassium cation
= (2*0.000483 mol) / 0.05 L = 0.02 mol/L = 0.02 M
Answer:
76,6 kg
Explanation:
A kg it's equal to 1x10^3 grams
A Gigagrams it's equal to 1x10^9 grams
Knowing this, a kg it's equal to 1x10^6 gigagrams
![7,66*10^{-5}[gigagram]*\frac{1*10^6 [kg]}{1 [gigagram]}= 76.6 [kg]](https://tex.z-dn.net/?f=7%2C66%2A10%5E%7B-5%7D%5Bgigagram%5D%2A%5Cfrac%7B1%2A10%5E6%20%5Bkg%5D%7D%7B1%20%5Bgigagram%5D%7D%3D%2076.6%20%5Bkg%5D)