The mitochondria is the powerhouse of a cell. They are important because they are an energy factor for both plant and animal cells. They take the food you eat, and turn that as energy for the rest of the cell to use. It is critical that every cell has one to survive whether plant or animal.
Answer:
The pressure, when the volume is reduced to 7.88L, is 846 torr (option A)
Explanation:
Step 1: Data given
The temperature of a gas = 25.0°C
AT 25 °C the gas occupies a volume of 10.0L and a pressure of 667 torr.
The volume reduces to 7.88 L but the temperature stays constant.
Step 2: Boyle's law
(P1*V1)/T1 = (P2*V2)/T2
⇒ Since the temperature stays constant, we can simplify to:
P1*V1 = P2*V2
⇒ with P1 = the initial pressure 667 torr
⇒ with V1 = the initial volume = 10.0 L
⇒ with P2 = the final pressure = TO BE DETERMINED
⇒ with V2 = the final volume = 7.88L
P2 = (P1*V1)/V2
P2 = (667*10.0)/7.88
P2 = 846 torr
The pressure, when the volume is reduced to 7.88L, is 846 torr (option A)
Answer:
It is a combination reaction; nitrogen and hydrogen combine to form ammonia.
Explanation:
Answer:
Explanation:
i don't know if this is 100% correct but i think it's inertia
Answer:
The reaction quotient (Q) before the reaction is 0.32
Explanation:
Being the reaction:
aA + bB ⇔ cC + dD
![Q=\frac{[C]^{c} *[D]^{d} }{[A]^{a}*[B]^{b} }](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%2A%5BB%5D%5E%7Bb%7D%20%20%7D)
where Q is the so-called reaction quotient and the concentrations expressed in it are not those of the equilibrium but those of the different reagents and products at a certain instant of the reaction.
The concentration will be calculated by:

You know the reaction:
PCl₅ (g) ⇌ PCl₃(g) + Cl₂(g).
So:
![Q=\frac{[PCl_{3} ] *[Cl_{2} ] }{[PCl_{5} ]}](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BPCl_%7B3%7D%20%5D%20%2A%5BCl_%7B2%7D%20%5D%20%7D%7B%5BPCl_%7B5%7D%20%5D%7D)
The concentrations are:
- [PCl₃]=

- [Cl₂]=

- [PCl₅]=

Replacing:

Solving:
Q= 0.32
<u><em>The reaction quotient (Q) before the reaction is 0.32</em></u>