Answer:
d) F
Explanation:
According to columb's law:
"The magnitude of electrostatic force between two charges is directly proportional to the product of magnitude of two charges and inversly proportional to separation between them."
If q₁ and q₂ are magnitude of two charges, d is distance between them and k is dielectric constant, then force F is given by

According to this force exerted on point charge Q is same as that of 3Q, so force point 3Q charge experience is also F
Answer:
See below
Explanation:
KE = 1/2 m v^2 multiply both sides by 2
2 (KE) = mv^2 divide both sides by m
2(KE) / m = v^2 sqrt both sides
√ [(2KE)/m ] = v
Answer:
Where the electric potential is constant, the strength of the electric field is zero.
Explanation:
As a test charge moves in a given direction, the rate of change of the electric potential of the charge gives the potential gradient whose negative value is the same as the value of the electric field. In other words, the negative of the slope or gradient of electric potential (V) in a direction, say x, gives the electric field (Eₓ) in that direction. i.e
Eₓ = - dV / dx ----------(i)
From equation (i) above, if electric potential (V) is constant, then the differential (which is the electric field) gives zero.
<em>Therefore, a constant electric potential means that electric field is zero.</em>
Answer:
Explanation:
Average speed = Total distance / Total time.
100 km/hr
r = 100 km / hr
t = 6 hours
d = 6 * 100 = 600 km
120 km / hr
r = 120 km / hr
t = 5 hour
d = 120 * 5
d = 600 km
Total distance = 600 + 600 = 1200 km
Total time = 5 hour + 6 hours = 11 hours.
Average speed = 1200 km / 11 hours = 109.1