Answer: An oxygen atom in heavy water has an extra neutron. A hydrogen atom in heavy water has an extra proton.
Explanation:
Answer:
a. True
b. True
c. False
d. True
Explanation:
a). A a very low substrate concentration ,
. Thus according to the Machaelis-Menten equation becomes
![$V_0 = \frac{V_{max} \times [S]}{Km}$](https://tex.z-dn.net/?f=%24V_0%20%3D%20%5Cfrac%7BV_%7Bmax%7D%20%5Ctimes%20%5BS%5D%7D%7BKm%7D%24)
Here since the
varies directly to the substrate concentration [S], the initial velocity is lower than the maximal velocity. Thus option (a) is true.
b). The Michaelis -Menten kinetics equation states that :
![$V_0 = \frac{V_{max} \times [S]}{Km+[S]}$](https://tex.z-dn.net/?f=%24V_0%20%3D%20%5Cfrac%7BV_%7Bmax%7D%20%5Ctimes%20%5BS%5D%7D%7BKm%2B%5BS%5D%7D%24)
Here the initial velocity changes directly with the substrate concentration as
is directly proportional to [S]. But
is same for any particular concentration of the enzymes. Thus, option (b) is true.
c). As the substrate concentration increases, the initial velocity also increases. Thus option (c) is false.
d). Option (d) explains the procedures to estimate the initial velocity which is correct. Thus, option (d) is true.
Equation for Half life :
A = a(0.5)^(t/h)
A is current amount, "a" is initial amount, h is halflife, t is time
5 = 40(0.5)^(t/1.3x10^9)
5/40 = (0.5)^(t/1.3x10^9)
take the log of both sides , power rule
Log(5/40) = (t/1.3x10^9) * Log(0.5)
(1.3x10^9) * Log(5/40) / Log(0.5) = t
3.9x10^9 years = t
And if you think about what a half life is, the time it take for the amount to reduce to half.
40/2 = 20
20/2 = 10
10/2 = 5
It went through 3 half-lifes
3 * 1.3x10^9 = 3.9x10^9 years
Answer:
a) 210.3 g/mol
b) 210.2 g/mol
c) 384.5 g/mol
Explanation:
First step we will calculate the molar masses of ; carbon atom, hydrogen atom and oxygen atom in each .
<u> Molar mass of dibenzyl ketone</u>
Molar mass of dibenzyl ketone = ∑ molar masses of atoms in dibenzyl ketone
= carbon( 15 ) = 15 ( 12.0107 ) + oxygen ( 14 ) = 1 ( 15.999 ) + hydrogen(14) =14(1.00784)
= 210.26926 ≈ 210.3 g/mol
<u> Molar mass of benzil</u>
Molar mass of Benzil = ∑ molar masses of atoms in Benzil
= carbon( 14) = 14(12.0107) + oxygen(2) = 2 ( 15.999) + hydrogen(10) =10(1.00784)
= 210.2262 ≈ 210.2 g/mol
<u>Molar mass of 2,3,4,5-tetraphenylcyclopentadienone</u>
Molar mass = ∑ molar masses of atoms
= carbon ( 29) = 29(12.0107) + oxygen (1) = 1( 15.999 ) + hydrogen(20) = 20(1.00784 )
≈ 384.5 g/mol
Answer:
The answer copper carbonate