<h2>Answer: The <u>height</u> of a sound wave determines its <u>loudness</u> </h2>
Sound waves are longitudinal mechanical waves, that is, they depend on a medium to propagate.
Among the characteristics of a sound wave, it is the amplitude, that is the degree of movement of the molecules of the medium in which the wave propagates.
Depending on how high this amplitude is, the sound will be louder.
Answer:
<h2>Angular Displacement 6.28 radians</h2>
Explanation:
for circular motion we are expected to solve for Angular Displacement it is measured in radian
Measurement of Angular Displacement.
we can measure it using the following relation
∅= s/r
where
s = the distance travelled by the body, and
r = radius of the circle along which it is moving.
given that
circumference c, s= 400 m
r= ?
we have to solve for the radius
we know that circumference

400= 2*3.142*r
400= 6.282*r
divide both sides by 6.284 we have
400/6.284
r= 63.63 m
Angular displcament
∅= 400/63.63
∅= 6.28 radians
Rate of change of momentum = impact force
(m*v-m*u)/t = F
4000*20/t = 80000 (note: v is zero as it stopped)
<span>soo, t = 1 sec</span>
A At one constant temp and another at a constant pressure
At the ground the ball will always have velocity along the direction of gravity. If upward motion is taken positive it will always have negative velocity at the ground because, if the ball was given an initial upward velocity then gravity will decelerate it and bring it down with a negative final velocity. If the ball is given an initial downward velocity then the ball will be further accelerated by gravity in the downward direction only, again maintaining negative direction. The magnitude however in both cases will be different. the final velocity at the ground will have higher magnitude in case of elevator moving downwards.