We can use the heat equation,
Q = mcΔT
where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J g⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Q = 11.2 kJ = 11200 J
m = <span>145 g
</span>c = ?
ΔT = (67 - 22) °C = 45 °C
By applying the formula,
11200 J = 145 g x c x 45 °C
c = 1.72 J g⁻¹ °C⁻¹
Hence, specific heat of benzene is 1.72 J g⁻¹ °C⁻¹.
Answer:
It's explained below.
Explanation:
An everyday situation is when we raise an object.
Now, when we raise an object, energy is transferred to the Earth object system and thus the gravitational field energy of the system will increase.
Now, this energy is usually released when the object falls. The mechanism of this release is known as gravitational force.
In the same manner, two magnetic and electrically charged objects that are interacting at a distance will exert forces on each other and this can lead to transfer of energy between the interacting objects.
You can have a solution of hydrogen peroxide that might say 10% that means that 10% per mass of the hydrogen peroxide solution is the hydrogen peroxide the rest is water.
concentration is the amount of mass in the solution eg 5gdm-3
hope that helps
Answer: The new concentration of a solution of
is 0.2 M 10.0 mL of a 2.0 M
solution is diluted to 100 mL.
Explanation:
Given:
= 10.0 mL,
= 2.0 M
= 100 mL,
= ?
Formula used to calculate the new concentration is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that the new concentration of a solution of
is 0.2 M 10.0 mL of a 2.0 M
solution is diluted to 100 mL.
Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the required grams of HCl by firstly identifying the limiting reactant via the moles of each reactant as they are in a 1:1 mole ratio:

Thus, we infer the hydrogen is the limiting reactant and therefore we use its 1:2 mole ratio with HCl whose molar mass is 36.46 g/mol:

Regards!