STP is the abbreviation of standard condition for temperature and pressure which is 273.15K temperature and 1.013× 10^5 Pa pressure. Since the pressure and temperature changes, I assume the question would ask about the result of the volume. The temperature used in ideal gas should be Kelvin, so 27 Celcius would be 300.15K.
The calculation would be
PV=T
V=T/P
V2/V1= T2*P1/T1*P2
V2/V1=273.15K* 90^10^3Pa/ 300.15K * 1.013× 10^5 Pa
V2= 0.81904 * 51.7ml
V2= 42.34ml
Distance= Speed x Time
1hr=60mins
60mins=3600 secs
20 x 3600=72000
72000 is your answer.
<h2>Steps:</h2>
- Remember that Density = mass/volume, or D = m/v
So firstly, we have to find the volume of the rock. To do this, we need to subtract the volume of water A from the volume of the water B. In this case:
- Water A = 30 mL
- Water B = 40 mL
- 40 mL - 30 mL = 10 mL
<u>The volume of the rock is 10 mL.</u>
Now that we have the volume, we can plug that and the density of the rock into the density equation to solve for the mass.

For this, multiply both sides by 10:

<h2>Answer:</h2>
<u>Rounding to the tenths place, the mass of the rock is 36.8 g, or C.</u>
Answer:
Avogadro number of pennies will extend to a distance of 6.02 * 10¹⁷ km
<em>Note: The question is missing some parts. The complete question is as follows;</em>
<em>A penny has a thickness of approximately 1.0 mm . If you stack ed Avogadro's number of pennies one on top of the other on Earth 's surface, how far would the stack extend (in km)? [For comparison, the sun is about 150 million km from Earth and the nearest star (Proxim a Centauri) is about 40 trillion km from Earth.]</em>
Explanation:
Avogadro number = 6.02 * 10²³
thickness of a penny = 1.0 mm
I mm = 0.001 m
Thickness of Avogadro number of pennies stacked one upon another will be:
6.02 * 10²³ * 0.001 m = 6.02 * 10²⁰ m
Distance in km;
1 m = 0.001 km
therefore, 6.02 * 10²⁰ m = 6.02 * 10²⁰ * 0.001 km = 6.02 * 10¹⁷ km
Avogadro number of pennies will extend to a distance of 6.02 * 10¹⁷ km
Everything has chemical properties it depends on the reactivity and the reactivity of the other element and what form it is in