Answer:
W = 0.49 N
τ = 0.4851 Nm
Force
Explanation:
The weight force can be found as:
W = mg
W = (0.05 kg)(9.8 m/s²)
<u>W = 0.49 N</u>
The torque about the pivot can be found as:
τ = W*d
where,
τ = torque
d = distance between weight and pivot = 99 cm = 0.99 m
Therefore,
τ = (0.49 N)(0.99 m)
<u>τ = 0.4851 Nm</u>
The pivot exerts a <u>FORCE </u>on the meter stick because the pivot applies force normally over the stick and has a zero distance from stick.
Answer:
ive once eaten octopus.. i dont recommend.. ANYWAY
i would rather shoot spaghetti out of my fingers ofc, that like free food and sneezing meatballs just sounds painful
Explanation:
Satellite. think of the moon.
Hope this helps!
Vote me Brainliest!
Answer:
5 m/s
Explanation:
Given that,
A vehicle is moving with 20m/s towards the east and another is moving 15m/s towards the west.
It is assumed to find the resultant velocity of the vehicle. Let east side is positive and west is negative. So,

Hence, the resultant velocity of the vehicle is equal to 5 m/s.
The flow rate is 17gtts/min.
<h3>What is the drug infusion rate?</h3>
- The rate of infusion (or dosing rate) in pharmacokinetics refers to the ideal rate at which a drug should be supplied to achieve a steady state of a fixed dose that has been shown to be therapeutically effective. This rate is not only the rate at which a drug is administered.
- The infusion volume is divided into drops, which is known as a drip-rate. The Drip Rate formula is as follows: Volume (mL) times time (h) equals drip-rate. A patient must get 1,000 mL of intravenous fluids over the course of eight hours.
- Infusion rates of 3–4 mg/kg per minute are advised by manufacturers to reduce rate-related adverse effects. Usually, the infusion lasts for several hours. Although not advised, rates exceeding 5 mg/kg per hour may be tolerated by some patients.
- If no negative reactions occur, the rate may be increased in accordance with the table every 30 minutes up to a maximum rate of 3 ml/kg/hour (not to exceed 150 ml/hour).
To find the flow rate is 17gtts/min:

Therefore, The flow rate is 17gtts/min.
To learn more about infusion rate, refer to:
brainly.com/question/22761958
#SPJ9