The elements which have similar behavior are Barium, strontium and beryllium.
Explanation:
Question: The force between a pair of 0.005 C is 750 N. What is the distance between them?
Answer:
17.32 m
Explanation:
From coulomb's Law,
F = kqq'/r²........................... Equation 1
Where F = Force between the force, q' and q = both charges respectively, k = coulomb's constant, r = distance between both charges.
make r the subject of the equation above
r = √(kqq'/F)..................... Equation 2
From the question,
Given: q = q' = 0.005 C, F = 750 N
Constant: k = 9.0×10⁹ Nm²/C².
Substitute these values into equation 2
r = √(9.0×10⁹×0.005×0.005/750)
r = √(300)
r = 17.32 m.
Hence the distance between the pair of charges = 17.32 m
<span>A: put an atom on a poster in the exhibit
Good luck. The poster itself is made of trillions of trillions of trillions
of atoms. You could not see the extra one any easier than you could
see the ones that are already there, and even if you could, it would be
lost in the crowd.
B: use a life size drawing of an atom
Good luck. Nobody has ever seen an atom. Atoms are too small
to see. That's a big part of the reason that nobody knew they exist
until less than 200 years ago.
D: set up a microscope so that visitors can view atoms
Good luck. Atoms are way too small to see with a microscope.
</span><span><span>C: Display a large three dimensional model of an atom.
</span> </span>Finally ! A suggestion that makes sense.
If something is too big or too small to see, show a model of it
that's just the right size to see.
Answer:
0.0443 m/s
Explanation:
= Mass of honeybee = 0.15 g
= Mass of popsicle stick = 4.75 g
= Velocity of honeybee
= Velocity of stick = 0.14 cm/s
In this system the linear momentum is conserved

The velocity of the bee is 4.43 cm/s or 0.0443 m/s
Answer:
The correct answer to the following question will be "41.87 m".
Explanation:
The given values are:
The speed of trooper = 
The velocity of red car = 
Now,
A red car goes as far as possible until the speed or velocity of the troops is the same as that of of the red car at
(∵
)

then,
The distance covered by trooper,


The distance covered by red car,
= 
= 
Maximum distance = 
=