Midway between the two<span> solstices we have equinoxes – Vernal Equinox in March and </span>Autumnal Equinox<span> in September. ... After this time, the Earth's northern axis is tilted </span>more<span> and </span>more<span>towards ... Then on </span>Summer Solstice<span>, the Sun will reach its farthest north position in the sky</span>
Answer:
160 kg
12 m/s
Explanation:
= Mass of first car = 120 kg
= Mass of second car
= Initial Velocity of first car = 14 m/s
= Initial Velocity of second car = 0 m/s
= Final Velocity of first car = -2 m/s
= Final Velocity of second car
For perfectly elastic collision

Applying in the next equation


Mass of second car = 160 kg
Velocity of second car = 12 m/s
Answer:
W = 9.93 10² N
Explanation:
To solve this exercise we must use the concept of density
ρ = m / V
the tabulated density of copper is rho = 8966 kg / m³
let's find the volume of the cylindrical tube
V = A L
V = π (R_ext ² - R_int ²) L
let's calculate
V = π (4² - 2²) 10⁻⁴ 3
V = 1.13 10⁻² m³
m = ρ V
m = 8966 1.13 10⁻²
m = 1.01 10² kg
the weight of the tube
W = mg
W = 1.01 10² 9.8
W = 9.93 10² N
Answer:
3 N to the right
Explanation:
There are two forces acting on the car:
- A force of 10 N towards the right
- A force of 7 N towards the left
Therefore, the net force is given by the difference between the two, since they are in opposite directions:

And the direction is to the right, since the force to the right has greater magnitude than the force to the left.
Answer:
Explanation:
Let the vertical height by which it descends be h . Let it acquire velocity of v .
1/2 mv² = mgh
v² = 2gh
As it leaves the surface of sphere , reaction force of surface R = 0 , so
centripetal force = mg cosθ where θ is the angular displacement from the vertex .
mv² / r = mg cosθ
(m/r )x 2gh = mg cosθ
2h / r = cosθ
cosθ = (r-h) / r
2h / r = r-h / r
2h = r-h
3h = r
h = r / 3