The time taken for the plant to hit the ground from a distance of 7.01m and at a velocity of 8.84m/s is 1.59s.
<h3>How to calculate time?</h3>
The time taken for a motion to occur can be calculated using the following formula:
v² = u² - 2as
Where;
- v = final velocity
- u = initial velocity
- s = distance
- a = acceleration
8.84² = 0² + 2 × a × 7.01
78.15 = 14.02a
a = 5.57m/s²
V = u + at
8.84 = 0 + 5.57t
t = 1.59s
Therefore, the time taken for the plant to hit the ground from a distance of 7.01m and at a velocity of 8.84m/s is 1.59s.
Learn more about time at: brainly.com/question/13170991
#SPJ1
Answer
given,
cooling fan revolution = 850 rev/min
fan turns before revolution = 1500 revolutions


θ = 1500 revolution
θ = 1500 x 2 x π
θ = 9424.78 rad
a) using equation of rotation
ω² = ω₀² + 2 α θ
ω = 0 because body comes to rest
0 = 89² + 2 x α x 9424.78
α = -0.42 rad/s²
b) time take for the fan to stop
ω = ω₀ + α t
0 = 89 - 0.42 t

t = 211.9 s
Answer:
At the highest point the velocity is zero, the acceleration is directed downward.
Explanation:
This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.
I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.
At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.
The protons and electrons are held in place on the x axis.
The proton is at x = -d and the electron is at x = +d. They are released at the same time and the only force that affects movement is the electrostatic force that is applied on both subatomic particles. According to Newton's third law, the force Fpe exerted on protons by the electron is opposite in magnitude and direction to the force Fep exerted on the electron by the proton. That is, Fpe = - Fep. According to Newton's second law, this equation can be written as
Mp * ap = -Me * ae
where Mp and Me are the masses, and ap and ae are the accelerations of the proton and the electron, respectively. Since the mass of the electron is much smaller than the mass of the proton, in order for the equation above to hold, the acceleration of the electron at that moment must be considerably larger than the acceleration of the proton at that moment. Since electrons have much greater acceleration than protons, they achieve a faster rate than protons and therefore first reach the origin.
Answer:
Inertia
Explanation:
Your body is naturally resisting turning left, as it wants to continue straight. So if feels like you are going right.