Answer:
(c) P and Sb
Explanation:
We can determine the number of valence electrons of an element:
- If it belongs to Groups 1 and 2, the number of valence electrons is equal to the number of group and the differential electron occupies the s subshell.
- If it belongs to the groups 13-18, the number of valence electrons is equal to: "Number of group - 10" and the differential electron occupies the p subshell.
Which pair of elements have the same valence electronic configuration of np³?
(a) O and Se. NO. They belong to the group 16 and the valence electron configuration is ns² np⁴.
(b) Ge and Pb. NO. They belong to the group 14 and the valence electron configuration is ns² np².
(c) P and Sb. YES. They belong to the group 15 and the valence electron configuration is ns² np³.
(d) K and Mg. NO. They belong to the groups 1 and 2 and the valence electron configuration is ns¹ and ns².
(e) Al and Ga. NO. They belong to the group 13 and the valence electron configuration is ns² np¹.
Answer:
They are all the same = 8
Explanation:
Since the symbol of that atom is not give, we can infer from the given number the nature and kind of element we are dealing with.
The number 15.999 rounded up to 16 is the atomic weight of the atom also called the mass number.
Although not peculiar enough, we are certain that this atom is Oxygen.
On the periodic table, elements are arranged based on their atomic numbers.
Atomic number of oxygen = 8 = number of protons
For every neutral atom on the periodic table, the number of protons and electrons are the same
Atomic number of oxygen = number of protons = number of electrons = 8
Number of neutrons = Mass number - atomic number = 16 - 8 = 8
Answer:The lone pair of electrons takes up more space than a regular bonding pair since it it is not confined to be between two atoms, so it adds coulombic repulsion to the bonding pairs and compresses the angle. Therefore, the bond angle is less than the standard 109.5∘ . It is actually 97.7∘
LEAD is the element that has this electron configuration
Answer:
The reaction is spontaneous when T> 0.98 Kelvin OR T> -272.17°C
Explanation:
Step 1: Data given
ΔH = 131.3 kJ/mol = 131300 J/mol
ΔS = 133.6 J/K*mol
T = 298K
Step 2: The balanced equation
C (s) + H2O (g) --> CO (g) + H2 (g)
Step 3: ΔG
For a reaction to be spontaneous, ΔG should be <0
When ΔG > 0 the reaction is spontaneous in the reverse direction.
ΔG = ΔH - TΔS
Since ΔG<0
ΔH - TΔS <0
Step 4: Calculate T where the reaction is spontaneous
ΔH - TΔS <0
131300 J/mol - T*133.6 J/K*mol <0
- T*133.6 J/K*mol < -131300 J/mol
-T <-131300 /133.6
-T< -982.8 Kelvin
T> 982.8 Kelvin OR T> 709.6°C
The reaction is spontaneous when T> 982.8 Kelvin OR T> 709.6°C
At 298 K this reaction C (s) + H2O (g) --> CO (g) + H2 (g) is <u>not spontaneous</u>