The segment that represents melting is time (minutes) and temperature.
Answer:
893K=620 °C
Explanation:
PV=nRT
P=nRT/V
P= (1 mol* 0.0821* 298K)/15L P=1.63 atm
T=PV/nR
T=(1.63 atm*45 L)/(1 mol*0.0821)
T= 893K=620 °C
Answer:

Explanation:
Hello,
In this case, we can apply the Boyle's law in order to understand the pressure-volume relationship as an inversely proportional relationship relating the initial and the final volume:

Next, we compute the final pressure P2:

Thus we validate, the higher the volume the lower the pressure.
Best regards.
de Broglie's wave equation describes that particles have wave properties. The equation is
λ = h/mv
Where λ is the wave length of the particle (m), h is the Planck's constant (6.62607 x 10⁻³⁴J s), m is the mass of a particle (kg) and v is the velocity (m/s).
λ = ?
h = 6.62607 x 10⁻³⁴ J s
m =200 g = 0.2 kg
v = 20 m/s
By substitution,
λ = 6.62607 x 10⁻³⁴ J s / (0.2 kg x 20 m/s)
λ = 1.66 x 10⁻³⁴ m
Hence, the wavelength of the 200 g ball 1.66 x 10⁻³⁴ m.