Answer:
I believe that the answer is d.
Explanation:
Because there is nothing to make the aircraft accelerate or decelerate, it is going to stay in constant motion with no acceleration.
Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.
Answer:
Explanation:
Bobbitt worm ( Eunice aphroditois). This segmented polychaete marine worm can attain lengths of 10 feet. It bristles...
Goliath beetle ( Goliathus species). African goliath beetle ( Goliathus giganteus ). Five species of goliath beetle...
atlas moth ( Attacus atlas). Stop and rest your eyes on this lovely...
Answer: F = 1235 N
Explanation: Newton's Second Law of Motion describes the effect of mass and net force upon acceleration: 
Acceleration is the change of velocity in a period of time: 
Velocity of the car is in km/h. Transforming it in m/s:

v = 13 m/s
At the moment the car decelerates, acceleration is
a = 65 m/s²
Then, force will be

= 1235 N
The horizontal net force the straps of the restraint chair exerted on the child to hold her is 1235 newtons.
When crest of one wave interferes with the trough of other wave, the amplitude of the resultant wave formed is less. Hence the type of interference is destructive interference.